Print ISSN: 1681-6900

Online ISSN: 2412-0758

Author : A. Mohammed, Laith


Experimental Investigations of Hole - EDM to Optimize ElectrodeWear through Full Factorial of Design of Experiment

Shukry H. Aghdeab; Laith A. Mohammed

Engineering and Technology Journal, 2015, Volume 33, Issue 2, Pages 372-379

Electrical discharge machining (EDM) is a process where the material removal of the workpiece is achieved through high frequency sparks between the tool (electrode) and the workpiece immersed into the dielectric solution. It is commonly used to produce moulds and dies, to drill small, burr free holes and to make prototypes for the aerospace and electronics markets. In this work, micro-holes were fabricated on copper alloys by using EDM. The output responses investigated was electrode wear weight (EWW). Full factorial of Design of Experiment (DOE) module in Minitab was used as a principal methodology to examine the effects of current and machining time over output responses. Experimental results indicate that the EWW was mainly affected by current, and can be reduced by increasing the current parameter. Minimum EWW (0.12gm) obtained at 10A.