Print ISSN: 1681-6900

Online ISSN: 2412-0758

Author : Abdulrazaq, Akar

Mechanical Properties of High Performance Carbon Fiber Concrete

Wasan I. Khalil; Akar Abdulrazaq

Engineering and Technology Journal, 2011, Volume 29, Issue 5, Pages 906-924

In this research mechanical properties of high performance carbon fiber concrete
are studied. The experimental work includes, producing high performance concrete
using superplasticizer and condensed silica fume reinforced with different volume
fractions (0%, 0.2%, 0.3%, 0.4% and 0.5%) of carbon fibers. The effect of chopped
carbon fibers on the mechanical properties (compressive strength, splitting tensile and
flexural strengths, and modulus of elasticity) of high performance concrete was also
studied. Generally, the results show that the addition of carbon fibers improves the
mechanical properties of high performance concrete. Also the results show that Using
condensed silica fume as addition by weight of cement increases the compressive
strength more than that as replacement by weight of cement. The percentages increase
in compressive strength of concrete containing 15% silica fume as replacement and as
addition by weight of cement are about 14% and 26% respectively. The addition of
carbon fibers causes a slight increase in compressive strength and modulus of
elasticity of high performance concrete when the fiber volume fraction increases,
while the splitting tensile and flexural strengths shows a significant increase relative
to the reference high performance concrete (without fiber). The percentage increase in
splitting tensile and flexural strengths for high performance concrete with fiber
volume fraction 0.5% at 28 days is about 45% and 46% respectively.