Print ISSN: 1681-6900

Online ISSN: 2412-0758

Author : A. Abid, Balasim


Removal of Lead and Copper Ions onto Granular Activated Carbon in Batch and Fixed Bed A Dsorber

Abbass H. Sulaymon; Balasim A. Abid; Jenan A. Al Najar

Engineering and Technology Journal, 2009, Volume 27, Issue 12, Pages 2336-2351

The adsorption of lead and copper ions onto granular activated carbon (DARCO
20-40 mesh) in a single component system has been studied using fixed bed adsorbers.
A film-pore diffusion model has been developed to predict the fixed bed breakthrough
curves for the two metal ions. This model takes account both external and internal
mass transfer resistance as well as axial dispersion with non-linear isotherm. The
effects of flow rate, bed height and initial metal ion concentration has been studied.
Batch adsorber experiments were conducted to estimate the parameters required for
fixed bed model, such as adsorption equilibrium isotherm constants the external mass
transfer coefficient and pore diffusion coefficient by fitting the experimental data with
theoretical model. The batch isotherm experimental data was correlated using
Langmuir and Freundlich isotherm models. The adsorption isotherm data follow the
Langmuir model better than Freundlich model. The pore diffusion coefficient was
obtained using pore diffusion model for batch adsorber by matching between the
experimental data and predicted data from the model. The results show that the filmpore
diffusion model used for fixed bed adsorber provide a good description of the
adsorption process for adsorption of metal ions Pb(II) and Cu(II) onto activated carbon
in fixed bed adsorber.