Print ISSN: 1681-6900

Online ISSN: 2412-0758

Author : A. Mohammed, Reem

Improved Wear Rate Resistance, Compression Strength and Hardness of Polymethylmethacrylate Resin with Orange Peel Powder for Artificial Denture Base

Reem A. Mohammed

Engineering and Technology Journal, 2020, Volume 38, Issue 3, Pages 308-318
DOI: 10.30684/etj.2021.168199

The material utilized for manufacturing artificial dentures should have high-grade mechanical properties in order to resist heavy forces inside the mouth. This study includes investigation of some of the mechanical properties (wear rate resistance, compression strength, and hardness) of the specimens prepared by (hand lay-up) method. The wear behavior experiments were performed on (a pin-on-disk tester) under various factors 5%, 8%, 11%, 14%, 17% weight fraction of orange peel, (10, 15, 20 N) load applied and (5, 10, 15 minutes) sliding time, and analysis these experimentally by using the Taguchi’s experimental design (L9) (MINITAB 16). Tests explicated that the specimens (polymethylmethacrylate - 17% orange peel) composites have the best wear rate resistance, compression strength and hardness shore D (0.040×10-5 cm3/, 142 MPa, 86 shore D) respectively than other specimens (polymethylmethacrylate - 5%, 8%, 11%, 14% wt. orange peel) and these specimens better than the specimens standard polymethylmethacrylate, which could be attributed to the homogeneous dispersion of orange peel particles in the polymethylmethacrylate resin matrix. The results (signal to noise ratio) showed the factors (17% weight fraction) orange peels, (20 N) load applied, and (5 min) sliding time gives the best wear rate resistance. The results of the analysis of variance showed the sliding time (C) is the essential factor effect on the wear rate resistance followed by (A) weight fraction of orange peels and (B) load applied were less affected on wear behavior rate.