Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Taguchi orthogonal array


Prediction of Surface Roughness and Optimization of Cutting Parameters in CNC Turning of Rotational Features

Yousif K. Shounia; Tahseen F. Abaas; Raed R. Shwaish

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1143-1153
DOI: 10.30684/etj.v38i8A.928

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation

Taguchi Approach to Optimize Pack Aluminization Parameters in Carbon Steel Using MINITAB13

Abbas Khammas Hussein

Engineering and Technology Journal, 2009, Volume 27, Issue 11, Pages 2259-2272

Pack aluminization has been rapidly developed and widely used in many fields
due to its superior properties of coating. Surface is the only part of the component
which has to coexist with external environment. Majority of engineering failures
originate from the surfaces and components degrade in service leading to failures such
as fatigue, wear, corrosion and oxidation. The present study deals with the surface
modification of steel base through diffusion of aluminium by aluminium pack
cementation for improving wear and corrosion resistance. The material chosen for
study is medium carbon steel. Effect of varying weight percentage (wt.%) of halide
activator (NH4Cl) at different diffusion temperatures and times on the microstructure
and microhardness of aluminized specimens was studied. Taguchi robust design
technique using MINITAB13 was used to rank several factors that may affect the
microhardness and microstructure in order to formulate the optimum conditions. The
Taguchi orthogonal array L9 (33) was used for experimental design with three level of
consideration for each factor. The respone (Microhardness) was analyzed based on the
Taguchi’s signal-to-noise ratio. The use of 4%wt. of (NH4Cl) at 5hr and diffusion
temperature of 700oC seems to be the optimum condition, where the surface hardness
could be increased to 1000Hv when aluminized. X-Ray diffraction studies have been
confirmed the presence of aluminides in the surface layer, which could be instrumental
in the significant increase in the surface hardness.