Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Sno

Physical Properties of Nanostructure Sno2 Thin Films Growth on Al2O3 Substrate by Pulsed Laser Deposition

Kasem Salman Kasem

Engineering and Technology Journal, 2014, Volume 32, Issue 5, Pages 957-965

In this paper, the synthesis of nanostructure tin oxide SnO2 thin films on (0001) sapphire substrates using a pulsed 532 nm Nd: YAG laser is presented. Deposition of films is achieved at three different substrate temperatures 300,400,500ºC. The influence of substrate temperature on the structural and optical properties of tin oxide films are discussed and analyzed. We have shown the results of x-ray diffraction that all films prepared with the installation of multi crystalline (tetragonal) and directional prevalent (101) for all modds before and after annealing. These films are highly transparent (63–79%) in visible region, and transmittance of the films depends on substrate temperature. The band gap of the films varies from 3.45 eV to 3.61 eV for various temperatures. The morphology of deposited films was characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), with increasing substrate temperature, both the grain size and surface roughness increase.
We have also investigated the photoluminescence (PL) emission of the simples produced by PLD. The absorption of very intense PL emission for the films at temperature T= 500 ºC. The photoluminescence (PL) spectrum of the SnO2 exhibits visible light emission with a peak at 602 nm.

Preparation and Characterization of High Quality SnO2 Films Grown by (HPCVD)

Baha T. Chiad; Nathera Ali; Nagam Th.Ali

Engineering and Technology Journal, 2014, Volume 32, Issue 4, Pages 801-810

In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The results show that both increase with substrate temperature increase this measurements deal with X-Ray diffraction results, that there is large change in the structure state of SnO2 thin f film by changing temperature parameter.

Preparation and Characterization of (Tio2-Sno2) Thin Films by Pulsed Laser Deposition

Saja H.Rashed; Adawiya J. Haider; Samar Younis

Engineering and Technology Journal, 2014, Volume 32, Issue 4, Pages 658-665

In this work, mixed oxide (TiO2-SnO2) thin films were grown on Si (111) and glass substrates by pulsed laser deposition (PLD) method. The influences of increasing amounts of SnO2 were investigated. The X-ray diffraction results show the peaks position of the plane was shifted towards higher angle values with increasing amounts of SnO2. The surface morphology of the deposits materials was also studied by using a scanning electron microscope(SEM) The results show that, the grain sizes decreases with increasing SnO2 content from the largest value (53.6)nm to smallest value (25.5) nm. From UV-visible spectroscopy, the distinct variations in the transmission spectra, and optical energy gap, of the thin films were also observed.

Influence of Deposition Temperature on Structure and Morphology of Nanostructured Sno2 Films Synthesized By Pulsed Laser Deposition (PLD)

Suaad .S.Shaker; Adawiya J. Haider

Engineering and Technology Journal, 2014, Volume 32, Issue 3, Pages 453-460

Nanostructured Tin oxide thin films were deposited on the Si (111) substrate using pulsed laser deposition technique at different substrate temperatures (200, 300,400 and 500 °C) in an oxygen pressure (5*10-1 mbar). The structure and morphology of the as-deposited films indicate that the film crystallinity and surface topography are influenced by the deposition temperature by changing from an almost amorphous to crystalline nanostructure and rougher topography at a higher substrate temperature. Hall Effect has been studied to estimate the type of carriers, from the result we deduced that the SnO2 thin films are n-type.