Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : dynamic buckling

Electrical Laser Alarm System for Controlling the Buckling Failure of 304 Stainless Steel under Shot Peening Treatment

A. I. Hussain; F. A. K. Fattah; Alkawi; H. J. M. Al

Engineering and Technology Journal, 2017, Volume 35, Issue 5, Pages 516-524

The purpose of this paper is to design and manufacture the electrical laser alarm system to assess the buckling failure of 304 stainless steel column and to estimate the critical buckling load (Pcr) under increasing compressive load without shot peening (WSP) and with shot peening (SP). The evaluation of the critical buckling load (Pcr ) was done experimentally and theoretically for long and intermediate pinned – fixed columns. The experimental results revaled that 25 min. shot peening time (SPT) improved the critical buckling load (Pcr ) by 13.3% - 15.39% improvement percentage (IP) for long columns while 18.51% - 23.07% for intermediates. Also it was observed that reducing the effective length (Leff ) resulting in increasing the effect of 25 min. shot peening time (SPT) and kept constant when effective length (Leff ) larger than 200mm. The difference percentage (DP) obtained from theoretically and experimentally comparison between the critical buckling load (Pcr ) was 33.33 to 41.18 for without shot peening and 23.07 to 33.34 for 25 min. shot peening time (SPT) based on Euler and Johnson theories for both long and intermediate columns. Also it was revaled that increasing the slenderness ratio (S.R) reducing the critical buckling load (Pcr) for both columns and both conditions of testing without shot peening (WSP) and shot peening (SP).

Dynamic Buckling Behavior for 304 Stainless Steel Columns Using Electrical LASER Alarm System

Hussain Jasim Al-Alkawi; Ekbal Hussain Ali; Firas Ali Jasim Al-Mahaweeli

Engineering and Technology Journal, 2016, Volume 34, Issue 11, Pages 2036-2046

The paper summarized some experimental main results of dynamic buckling under increasing compression load. The buckling behavior of 304 stainless steel was investigated using Euler and Johnson formulas, which is the most commonly used in industrial applications. It has been verified that metallic materials can exhibit non-linear buckling behavior with mechanical properties dependency. This behavior yield a non-linear model which based on Hong’s model but using the mechanical properties with cycles to failure. It was observed that the proposed model gave safe predictions while the Hong’s model yields non satisfactory predictions of critical buckling loads and also design electrical LASER alarm system to avoid the failure occurs in the specimen when access to critical buckling load.