Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Direct tensile strength

Properties of Self-Compacting Cementitious Composite Materials Containing Cement Kiln Dust Powder

Ahmed S. Kadhim; Alaa A. Atiyah; Shakir A. Salih

Engineering and Technology Journal, 2020, Volume 38, Issue 6, Pages 879-886
DOI: 10.30684/etj.v38i6A.592

This paper aims to investigate the influence of utilization micro cement kiln dust as a sustainable materials additive in order to reduce the voids and micro cracks in the cementitious mortar materials which cause a drastic reduction in the load carrying capacity of the element. Its therefore very important to decrease the pores and enhance the mechanical strength of the cementitious composite materials. In this article, the properties of self-compacting mortar containing micro cement dust additive was experimentally assessed. Micro cement dust powder was added to the self-compacting mortar in (1, 2, 3, 4 and 5 %) percentage by weight of cement to be used as cementitious sustainable materials. The experimental results indicated that the modification and enhancement of the workability of fresh mixture and the mechanical strengths of self-compacting mortar were increased as micro cement dust additives increases. Also; the water absorption and total porosity were decreased with increases of micro cement dust powder.

Influence of Recycled Fine Aggregates on Strength Properties of Reactive Powder Mortar

Doaa H. Nayyef; Shatha S. Hasan

Engineering and Technology Journal, 2020, Volume 38, Issue 3A, Pages 288-294
DOI: 10.30684/etj.v38i3A.265

Although many researchers have done many studies on recycled aggregate concrete, information is very little about the influence of utilizing recycled aggregate in the production of reactive powder concrete. Experimental work was executed to investigate the influence of utilizing recycled concrete as fine aggregate in reactive powder concrete. Five different mixes were prepared, the first mix, or control mix, was prepared with natural sand, four additional mixes were prepared with different percentage of substitution of fine aggregates(20%,40%,60%, and 80%). The investigation was carried out using compressive strength test, direct tensile strength test and flexural strength test, and two methods of curing were used standard curing at 20 °C and steam curing at 90°C. the results indicated that the strength decreases with increased the percentage of recycled fine aggregate, and the best percentage was 40% replacement where the percentages of decrease at this percentage at 28-day steam curing were 2.46, 6.66, and 2.14 for compressive strength, flexural strength, and direct tensile strength respectively.