Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : evaluation

Experimental Study of the Performance Water Distillation Device by Using Solar Energy

T. Z. Farge; K. F.Sultan; A.M. Ahmed

Engineering and Technology Journal, 2017, Volume 35, Issue 6, Pages 653-659
DOI: 10.30684/etj.35.6A.14

Evaluation and an experimental study of the performance of solar water distillation by using collector box with the aperture area of the water distillation of (1*0.6) m. The obtained results are shown that the amount of distilled water increased with increasing the solar radiation temperature. The highest solar water distillation efficiency was found equal to 11.4% for rainy and partially cloudy day between 8am to 10am for 12/4/2016. Also the second higher efficiency was found equal to 5.155 for a sunny day between 10am to 12 pm for 20/4/2016. The results indicated that the distilled water can be obtained on if even the weather condition very bad and the solar radiation very low as well as the higher amount of distilled water can be obtained at higher values of solar radiation intensity. Experimental results showed the higher ambient temperature lower the condensation, which lowering the amount of distilled water.

Evaluation of Total Demand For Al-Hussainiyah Irrigation Project Using Geomatics Techniques

Abdul Razzak T. Ziboon; Mahmoud S. Mahdi; Hanan Kadhum

Engineering and Technology Journal, 2016, Volume 34, Issue 9, Pages 1715-1730
DOI: 10.30684/etj.34.9A.1

In this paper, the crop water requirement was calculated using two methods; the first method is FAO-56-Penman Monteith. While the second method, is the Penman Monteithutilizingsatellite image data where the Landsat 5 TM image is used in this method. The estimated ETCusing these two methods wasof equal value,5.20 mm/sec.This verifies the use of this satellite image for estimation of ETC. The agricultural situation and water demand of each canal and the corresponding cultivated area were evaluated.This evaluation shows that
Al-HussainiyahCanal has the highest value of discharge (12.43 m3/sec) with maximum cultivated area (89.82 km2). The Al-ajmea Canal has the lowest discharge rate of (0.25 m3/sec), with minimum cultivated area of (0.39 km2).These canals operate under half of their design discharge and the cultivated area for this project distributed mainly along the main canals. Evaluation of the water use efficiency (WUE)of the project shows that the maximum value of the estimated WUE was at Al-kamalea canal 7.9 km2/m3/sec. While the minimum value was at Al-ajmea canal 1.6 km2/m3/sec. The average WUE for the area of study was 7.2 km2/m3/sec, which is equal to the WUE ofAl-HuassainiyahCanal.It has been proven that the Landsat 5 TM image can be effectively used in monitoring irrigation network, especially when considering large areas. It can be used for estimating and evaluating the water consumption and the water use efficiency of the irrigation projects in Iraq.

Selection, Design, and Management of Sanitary Landfill Site(s) for Mosul City

Sati Mahmoud Al-Rawi

Engineering and Technology Journal, 2014, Volume 32, Issue 13, Pages 3200-3208
DOI: 10.30684/etj.32.13A.11

In this paper, two landfill disposal sites proposed by the Mosul municipality were compared, assessed and designated the east and west landfill sites, respectively. Forty selected parameters related to landfill site suitability were used for the comparison. The suitability of the site for each parameter was graded as “poor,” “fair,” “good,” or “excellent,” depending on the adequacy of the parameter relative to guidelines and landfill criteria. The proposed sites appeared to meet most of the criteria required for similar facilities. Based on the soil characteristics, groundwater quality, area capacity, and other specific parameters, however, the proposed east landfill site is superior to the west landfill site. Mixed and area method models seemed suitable for these sites. The results indicated that soil cover is urgently needed for the west site and, to a lesser degree, the east site. Calculations based on Iraqi experience in landfill construction revealed that the east landfill site can be operated for 10 years, with 7 m of waste high. For the west landfill site, the height of waste for the same period approaches 15 m. Due to the complexity of the site topography, high cost burden, and lack of experience in implementing such project, it would be necessary to operate this site for 5 years with a waste height of 6.5 m. Importantly, the findings of the study reveal no evidence for potential groundwater contamination. It is concluded that construction of a proper sanitary landfill site for integrated solid waste management is a major necessity and should be a priority for the city of Mosul.