Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Digital 3D-Touch Probe

Automatic Tool Path Generation for Parametric Surfaces

Tahseen F. Abbas; Sara J. Shawi

Engineering and Technology Journal, 2019, Volume 37, Issue 1A, Pages 20-27
DOI: 10.30684/etj.37.1A.4

A tool path generation algorithm has been proposed and implemented in the presented work. The aim of the development of tool path algorithm is to machine parametric surface with a given tolerance and scallop height. The algorithm proposes dividing the desired parametric surface to several linear segments depending on the desired accuracy of the parametric surface. The Bspline technique has been used to generate the required data of the parametric surface. After generating the tool path, the cutter movement has been simulated allowing to reduce the cutting time and cost. The tool path is verified on the C-TEK CNC milling machine by machining six models. Various tool path strategies are also discussed and compared with the developed algorithm. The machining performance includes machining time; dimensional accuracy and surface roughness were measured for result evaluation. A measuring method has been proposed and implemented to measure the accuracy of the final 3D models. A Digital 3D-Touch Probe was used. The statistical method of error assessment and similarity factor has been implemented in this work to show the efficiency of the proposed works. The results showed that the similarity factor of the proposed works were (87.6%) for one model, and (85.9%), (89.6%) for other models. Matlab (v.7.1), UG-NX8.5, and VERCUT software have been used in this work for implementation. A comparison between the proposed method and UG-NX8 has been done to present the flexibility of the proposed method.