Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Organic Promoter

Absorption of Carbon Dioxide into Aqueous Ammonia Solution using Blended Promoters (MEA, MEA+PZ, PZ+ArgK, MEA+ArgK)

Farah T. Al-Sudani

Engineering and Technology Journal, 2020, Volume 38, Issue 9, Pages 1359-1372
DOI: 10.30684/etj.v38i9A.876

Absorption of CO2 into promoted-NH3 solution utilize a packed column (1.25 m long, 0.05m inside diameter) was examined in the present work. The process performance of four different blended promoters monoethanolamine (MEA)+ piperazine (PZ), piperazine (PZ)+ potassium argininate (ArgK) and monoethanolamine +potassium argininate was compared with unpromoted-NH3 solution by evaluated the absorption rate (φ_(CO_2 )) and overall mass transfer coefficient (K_(G,CO_2.) a_v) over the operating ranges of the studied process variables (1-15Kpa initial partial pressure of CO2, 5-15 Liter/min gas flow rate, 0.25-0.85 Liter/min liquid flow rate). The results exhibit that the absorption behavior and efficiency can be enhanced by rising volumetric liquid flow rate and initial CO2 partial pressure. However, the gas flow rate should be kept at a suitable value on the controlling gas film. Furthermore, it has been observed that the (PZ+ArgK) promoter was the major species that can accelerate the absorption rate and reached almost 66.166% up to123.23% over that of the unpromoted-NH3 solution.

Dynamic Study of Carbon Dioxide Absorption Using Promoted Absorbent in Bubble Column Reactor

Safa A. Al-Naimi; Farah T. Jasim; Ahmed N. Kokaz

Engineering and Technology Journal, 2019, Volume 37, Issue 1C, Pages 70-78
DOI: 10.30684/etj.37.1C.11

The most common process to remove carbon dioxide from natural gas and the flue gasses is absorption into suitable solvents. Absorption of carbon dioxide are studied experimentally in this work using bubble column reactor (glass cylindrical (QVF) of 7.5 cm i.d. × 140 cm height), where different types of absorbent (30%MEA, 30%K2CO3), promoter types (organic(piperazine)and inorganic(amino acids)) and concentrations were examined over a wide range of gas flow rate cover homogeneous to transition flow regime at ambient temperature and atmospheric pressure. The results showed that the dissolved gas undergoes a pseudo-first order reaction, and the optimum superficial velocity of gas given a higher conversion and rate of reaction at Ug=0.025 m/sec, at this velocity the reaction rate of monoethanolamine with carbon dioxide (94.1% conversion and RA = 7.75*10-3 Kmol/m3 .sec) is higher than reaction rate of potassium carbonate with carbon dioxide(29.3% conversion and RA = 2.73*10-3 Kmol/m3 .sec). Furthermore, the addition of promoters to the 30%K2CO3 absorbents enhanced the reaction between potassium carbonate with carbon dioxide and increased the reaction rate when increasing the concentration of promoters to the critical concentration. The results show that the piperazine is a better promoter from other types of the amino acid promoter used was 52.1% increase in carbonate conversion with carbon dioxide