Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Soil resistance


Effect of Dynamic Earth Vibration on the Behavior of Laterally Loaded Single Pile Embedded within Unsaturated Soil

Maha H. Abood; Mahmood R. Mahmood; Nahla M. Salim

Engineering and Technology Journal, 2021, Volume 39, Issue 12, Pages 1748-1752
DOI: 10.30684/etj.v39i12.508

Most of the studies of laterally loaded piles focused on the behavior for piles subjected to static or cyclic lateral loading embedded within dry or saturated soils, few studies investigate the behavior of piles embedded within partially saturated soils and subjected to dynamic loads. In this research, an experimental study presents an aluminum pile model embedded within dry, fully saturated and partially saturated soils, subjected to dynamic load with the El Centro 1940 NS acceleration data (0.05g, 0.15g, and 0.32g) accelerations. Three different lowering levels of the water table for fully saturated soils model is achieved to get partially saturated soils of three different values of matrix suction. During an earthquake model, a liquefaction phenomenon is observed by boiling of sand and completed collapse in the soil as shown in the results. It is concluded that the resisting to the bending moment reduced by 22%, 50%, and 57% after 1st, 2nd and 3rd lowering of water level respectively, than that of the saturated condition. This reduction approaches to 28% for completely dry soil. It is worth to mention, that, the deflection of the pile reduced as the lowering of water level increased. The soil resistance increases with the increasing of dynamic load acceleration. The soil resistance increases about 35% when the acceleration increase from 0.05g to 0.15g and an increase of about 22% when the acceleration increases from 0.15g to 0.32g.