Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Basrah


Assessment of Water Quality Indices for Shatt Al-Basrah River in Basrah City, Iraq

Hussein H. Karim; Abdul Razzak T. Ziboon; Luay M. Al-Hemidawi

Engineering and Technology Journal, 2016, Volume 34, Issue 9, Pages 1804-1822

Oil projects in the province of Basrah are widely spread and remarkably increasing as they are considered to be of a significant impact on the environment of this region in elements of air, water and soil. This is due to the presence of toxic elements in the air as a result of fuel, or waste thrown into the water. So, this research addresses to study the amount of the pollutants concentration that are discharged by Shuaiba refinery which is located in Basrah province and works for about 24 hours daily.To assess the impact of the refinery on the river, 36 water samples were collected for six months period (from December, 2014 - May, 2015) as well as field measurements and laboratory analyses in order to get appropriate solutions and proposals as much as possible. 180 field measurements have been achieved include electrical conductivity (EC), total dissolved solids (TDS), turbidity, water temperature, and hydrogen ion concentration (pH). In addition, 342 water samples have been prepared to measure several physical and chemical characteristics (NH3, NH4, NO2, NO3, SO4, Cl and Ca, oil and grease, and total hardness TH) inside and outside Shuaiba refinery in the study area. Measurements of these pollutant concentrations were carried out on six sampling sites; one inside the wastewater collection tanks of the refinery and the remained five sites along the Shatt Al-Basrah River.
The locations of these sites were selected according to the land use map of Landsat 8 data 2015 and the coordinates of each sample location was measured precisely by GPS. The analysis, pollutants concentration maps and their locations on the satellite image were carried out using Arc GIS 10.3 and ERDAS 2013 software. The field and laboratory test results of water samples indicated high pollutants concentrations during December, April andMay months, while there were a decreased pollutants concentration particularly during the month of March. It is noticed the high reflectivity values in areas that contain contaminants (turbidity) or oily spots with a purity of more sites. The calculations of water quality index (WQI) for all the study sites are within the range of 11.79 to 21.31. Accordingly, the overall WQI class of the study sites in Shatt Al- Basrah River can be emphasized within "poor category" in the polluted range according to studied types of water pollution. The deterioration of the Shatt Al-Basrah water quality is observed toward south of Basrah city due to the pollutants flow into the river.

Evaporation Estimation Using Adaptive Neuro-Fuzzy Inference System and Linear Regression

Ali H. Al-Aboodi

Engineering and Technology Journal, 2014, Volume 32, Issue 10, Pages 2465-2474

Evaporation is important for water planning, management and hydrological practices, and it plays an influential role in the management and development of water resources. This study demonstrates the application of two different models, adaptive neuro-fuzzy inference system (ANFIS), and linear regression (LR) models for estimating monthly pan evaporation in Basrah City, south of Iraq. In the first part of this study, the ANFIS model is used twice, in the first one, the temperature is used as input data only, and in the second one, the temperature and relative humidity are used as input data for predicting the evaporation. A verification test is added to check the model correctness by matching the calculated evaporation with the once observed in Basrah city for the period (1980-2009). In the second part of the study, the results obtained by ANFIS models are compared with results of linear regression model. The comparison reveals that the ANFIS models give better accuracy in estimating monthly pan evaporation than the linear regression model. The accuracy is improved about 5% in correlation coefficient (R) and determination coefficient (R2). The results proved that monthly pan evaporation could be successfully estimated through the use of ANFIS models.

Water Quality Index for Basrah Water Supply

Risala A. Mohammed

Engineering and Technology Journal, 2013, Volume 31, Issue 8, Pages 1543-1555

The water quality index (WQI) is a very effective method that allows to compare the quality of various water samples based on the indicator values of each sample. In this study, water quality index for Basrah water supply was determined by choosing nineteen water treatment plant (WTP) in Basrah city. Twelve chemical and physical parameters of each WTP were analyzed for one year during 2011. The results show that the WQI values of water supply in Basrah city are ranged from 83 to 275. About 10% of water supply can be classified as a good water, 74% can be classified as a poor water and the remaining 16% are very poor water. The prime cause of deterioration in Basrah water quality is the poor quality of the raw source water represented by Shatt al-Arab river, due to the large amount of contaminants are discharged in it. In addition, it is affected by the tide phenomenon of Arab Gulf which causes increase of salts concentrations. Also, the WTPs in Basrah city are conventional type that do not deal with soluble elements. These plants need upgrading by adding filter membranes or ion exchange units, to produce safe water for human consumption.