Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Taguchi


Investigation the Electrode Wear Rate and Metal Removal Rate in EDM Process using Taguchi and ANOVA Method

Safaa K. Ghazi

Engineering and Technology Journal, 2020, Volume 38, Issue 10A, Pages 1504-1510
DOI: 10.30684/etj.v38i10A.1231

The experimental work of this paper leads to electrical discharge machining (EDM). A system for machining in this process has been developed. Many parameters are studied such as current, pulse on-time, pulse off time of the machine. The main aim of this work is to calculate the metal removal rate (MRR) and electrode wear rate (EWR) using copper, electrodes when machining tool steel H13 specimens of a thickness (4mm).
Different current rates are used ranging from (30, 42, and 54) Amp, pulse on-time ranging from (75, 100, and 125) and pulse off time ranging from (25, 50, and 75) found that high current gives large electrode wear and metal removal rate and. The experiment design was by Taguchi Method. From an analysis of variance (ANOVA) the more active influence of input factors on the outputs is currently for metal removal rate (MRR) (58%) and electrode wear rate (EWR) (57)

Multi-Objective Optimization of Friction Stir Welding for Aluminum Alloy (2024-T3)

Abbas K. Hussein; Laith K. Abbas; Ahmed A. Seger

Engineering and Technology Journal, 2020, Volume 38, Issue 2, Pages 185-198
DOI: 10.30684/etj.v38i2A.280

In this research, a multi-response optimization based on Taguchi method is proposed for friction stir welding (FSW) process for (2024-T3) aluminum alloy. Three different shoulder diameters of tools with tapered pin geometry of (12, 14 and 14 mm) with variable rotation speed (710, 1000 and 1400 rpm) and welding speed of (40, 56 and 80 mm/min), three different tilting angles of (1, 2 and 3 degree) and three welding direction of (1, 2 and 3 passes). The results of this work showed the single optimization by using (Taguchi method) at the optimum condition for the tensile strength and yield strength were (365 MPa) and (258 MPa) respectively; at the parameters: shoulder diameter (14 mm), rotation speed (1400 rpm), linear speed (40 mm/min), tilting angle ((3°) for tensile strength and (1°) for yield strength) and welding direction (3 passes). The results of multi-response optimization for (FSW) process at the optimum condition for tensile strength and yield strength were (371 MPa) and (268 MPa), respectively; at the parameters: shoulder diameter (14 mm), rotation speed (1400 rpm), linear speed (40 mm/min), tilting angle (3°) and welding direction (3 passes).