Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Surface Roughness

Experimental Investigation of Surface Roughness Using Uncoated and Coated Tungsten Carbide Cutting Tool in Turning Operation

Frzdaq N. Thamer; Ali Abbar; Farhad. M. Othman

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 768-778
DOI: 10.30684/etj.v39i5A.1887

The cutting process is an important process of industrialization. It is requisite to using advantage quality cutting tools in order to preserve the type of product. Coating on the cutting tool has a substantial effect in terms of mechanical properties and the end results of the product. The cutting tool can be manufactured in various material types, but today's cemented tungsten carbide is the most commonly used material in the tool industry because its properties comply with manufacturers' requirements. This study investigates the impact of an Al2O3 coated cutting tool relative to an uncoated cutting tool on the dry cutting process. Different parameters are used in the cutting process when cutting the metal. The cutting parameters used are feed rate and cutting speed, An analysis of the effects of these parameters on the surface roughness. In this analysis, the surface roughness are measured for components turned from steel1040, The L9 Taguchi orthogonal arrays and analyses of variance (ANOVA) was employed to analyze the influence of these parameters. In the case of (uncoated, Al2O3 coated tool), the better surface roughness (SR) with used feed rate (0.05 mm / rev) and cutting speed (140 m/min) where the roughness value was (0.81μm) and (0.78μm) Respectively. The results of this study indicate that the ideal parameters combination for the better surface finish was high cutting speed and low feed rate.

Studying The Effect of a New Mixed Cutting Fluid on Surface Roughness

Mohammed H. Shaker; Salah K. Jawad; Maan A. Tawfiq

Engineering and Technology Journal, 2020, Volume 38, Issue 11, Pages 1593-1601
DOI: 10.30684/etj.v38i11A.1516

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21μm), while Ra exceeded (1μm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.

Prediction of Surface Roughness and Optimization of Cutting Parameters in CNC Turning of Rotational Features

Yousif K. Shounia; Tahseen F. Abaas; Raed R. Shwaish

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1143-1153
DOI: 10.30684/etj.v38i8A.928

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation

Effect of Wire Diameter, Feeding Rate, Pulse (on/off) Time on Surface Roughness and Metal Removal Rate for Cr-Mo Steel (SCM425H) During Wire Electrical Discharge Machine (WEDM) Cutting Operation

Saad K. Shather; Sami A. Hammood; Noor Al-Huda A. Hussain; Noor H. Hasson

Engineering and Technology Journal, 2020, Volume 38, Issue 6, Pages 854-860
DOI: 10.30684/etj.v38i6A.524

Increase the demand to produce complex shapes with high quality and dimensional accuracy such as production aerospace, cars, die sinking has been leading to increase the demand to use the non- traditional cutting operations such as wire electro-discharge machine (WEDM) rather than using the traditional operations. An idea to understand the effect of wire diameter, wire feed, pulsing (on/off) time on surface roughness, and metal removal rate of Cr-Mo steel during wire electrical discharge machining was investigated. Two Steel alloy samples with dimensions of (60 x50 x 20)mm were cut into four rectangular spaces with (5x10x20)mm at one side of each sample using wire cut (EDM) machine with a wire diameter of 0.25 mm and feeding rate 2 m/min for sample 1 and a 0.3 mm diameter and 3 m/min feeding rate for sample 2. Pulse (on, off) time was (110, 50), (112, 52), (115, 55), (116, 57) corresponds to space 1, space 2, space 3, and space 4 in both steel block. Surface roughness and metal removal rate measurements were estimated. The results showed that wire diameter, feeding rate, and pulse (on, off) time is proportional with metal removal rate, while reversed with surface roughness. The wire diameter of 0.3 mm and a feeding rate of 3m/min enhanced better surface quality and productivity. Pulse (on, off) time is the most effective parameter. Best duration time was recorded at the values (116, 57)

Improve the Surface Characteristics of the Electric Discharge Machining Employing a Method Burnishing Process

Shukry H. Aghdeab; Ahmed G. Abdulameer; Ahmed B. Abdulwahhab; Majid H. Ismiel

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 545-551
DOI: 10.30684/etj.v38i4A.308

Electrical Discharge Machining (EDM) applies the concept of material eradication by utilizing electric spark erosion. The target of this exploration concentrates to examine the ideal procedure parameters of EDM on Aluminum 6061-T6as a workpiece with copper as a tool electrode. The effect of various process operators 'on machining rendering was examined. Internal factors with current (10, 20, 30) Ampere, pulse on time (50, 100, 150) μs was used after which takes pulse off time (25, 50, 75) μs. All parameters applied for empirical acts with influence on Ra (surface roughness ). The result showed that MRR" Material Removal Rate” is increment by expanding in current and pulse on time and it declines by expanding in pulse off time. Optimal condition are gained when using " Using current 30 Ampere, pulse on time is 150 μs and minimize assessment of pulse off time is 25 μs.

Experimental Investigation on Electrochemical Grinding (ECG) for Stainless Steel 316

Abdullah J. Ghadban; Abbas F. Ibrahim

Engineering and Technology Journal, 2020, Volume 38, Issue 1, Pages 20-25
DOI: 10.30684/etj.v38i1A.176

This research focuses on material removal rate (MRR) and surface roughness during electrochemical grinding (ECG) for stainless steel 316. The effect of applied current, electrolyte concentration, gap size and spindle speed on machining performances has been studied. Where applied current used are (10, 20, 30, 40) A, electrolyte concentration used (100, 150, 200, 250) g/l, gap size used (0.2, 0.3, 0.4, 0.5) mm and spindle speed used (75, 150, 180, 280) rpm. Through the Taguchi design based experimental study the characteristic features of the ECG process are discussed. Where the maximum MRR can be obtained at 40 A of the current, 250 g/l of the concentration, 0.2 mm of the gap and 180 rpm of spindle speed. The best surface roughness can be obtained at 10 A of the current, 200 g/l of the concentration, 0.4 mm of the gap and 280 rpm of spindle speed..

Effect of laser Peening on the Microhardness and Roughness of Al-7277 alloy

Mays O. Hashim; Abdul Hadi K. Judran; Razi J. Al Azawi

Engineering and Technology Journal, 2019, Volume 37, Issue 10A, Pages 404-407
DOI: 10.30684/etj.37.10A.4

The purpose of the study conducted was an analysis of the influence of pulse density per area unit of LSP on (7277AL Alloy) regarding the surface characterization, roughness achieved and microhardness. The samples, which were used in this investigation, are 7277Al Alloy. Specify the laser parameter used in this study effect on sample surface properties were studied. Such as laser energy, and laser pulses number the results reveal that the microhardness enhancement by 80%, while the surface roughness increased by 69% when laser energy of 360mj and the number of laser pulses of 100 pulse were applied. X-ray fluorescence analyses and optical microscope were carried out for all samples.

Effect of Potassium Chloride and Potassium Sulphate Electrolyte Solutionon Surface Roughnessand Material Removal Rate in Electro Chemical Machining (ECM)

Heba S. Qasim; Shukry H. Aghdeab

Engineering and Technology Journal, 2019, Volume 37, Issue 8A, Pages 341-347
DOI: 10.30684/etj.37.8A.5

Electrochemical machining (ECM) is nontraditional machining
which is used to remove metal by anodic dissolution. In this study the
metal workpiece (WP) was stainless steel (AISI 316) and potassium
chloride (KCl) and potassium sulphate (K2SO4) solutions were used as
electrolyte, and the tool was used from copper. In this work the
experimental parameters that used were concentration of solution,
current and voltage as input. While surface roughness (Ra) and material
removal rate (MRR) were the output. The experiments on electrochemical
machining with using concentration (10, 20 and 30) g/l, current (2, 5 and
10) A and voltage (6, 12 and 20)V. Gap size between tool and WP (0.5)
mm. The results showed that (K2SO4) solution gave surface roughness
and material removal rate less than (KCl) solution in all levels, maximum
(Ra) is (0.471) and minimum (0.049), while (KCl) solution gave
maximum (Ra) was (4.497) and minimum was (0.837). Generally
increasing in machining parameter (concentration of solution, current
and voltage) lead to increase in (Ra) and (MRR). This study aims to
compare the effect of using different electrolyte solution including
potassium chloride (KCl) and potassium sulphate (K2SO4) on the surface
roughness (Ra) and material removal rate (MRR).

Optimization of MRR and Surface Roughness for 7024 AL-alloy in EDM Process

M.M. Abdulrazaq; S.K. Ghazi

Engineering and Technology Journal, 2017, Volume 35, Issue 5, Pages 546-553
DOI: 10.30684/etj.35.5A.15

Electro discharge machining is major non-traditional operations for cutting the materials due to its suitability and benefits. The experimental work of this paper deals with electrico discharge machining (EDM). A system for machining in this process has been developed. Many parameters are studied such as current, time on and time off. Different current rates are used ranging from (30, 36 and 42) Amp, found that low current gives less material removal rates and good surface roughness. The results showing that maximum MRR is achieved (0.525) mm3/min when machining current (42), time on (150), and time off (50) while good surface roughness (2.11 μm) when machining current (30), time on (50), and time off (25).The level of importance of the machining parameters for surface roughness and material removal rate is determined by using Taguchi design experiments and analysis of variance (ANOVA).

Study the Effect of Coupling Agents (Polyvinyl alcohol) and (Lignin) on Mechanical Properties for Polymer Composite Materials

Balkees Mohammed Diaa

Engineering and Technology Journal, 2016, Volume 34, Issue 2, Pages 26-34
DOI: 10.30684/etj.34.2B.20

In this research study the mechanical properties of (Impact, Hardness and Surface roughness) for PMCs materials that used for (Load-bearing structure, Sandwich panels , radio controlled vehicles, sporting goods …etc.), the PMCs materials made from epoxy resin (Polyp rime-EP) type as matrix and a random glass fiber (E-type) as a reinforcementwith volume fraction (20%) by Hand-Lay up process after addition of coupling agent (Polyvinylalcohol (PVA)) with percent of (0.5%) for first sample and addition of coupling agent (Lignin (Lg)) with percent of (0.5%)for second sample but third sample was polymer composite material without addition of coupling agent for comparing with others, and we noticed an enhancement in mechanical properties for polymer composite material after addition of coupling agent. Either when immersion the three samples in solutions, first solution was water (H2O) and the second solution nitric acid (HNO3) diluted with concentration (0.1N), for seven weeks to each solution, mechanical properties were tested for samples every week, showed decreasing in values of mechanical properties, the polymer composite materials that contains coupling agents expressed more resistance than polymer composite material untreated with coupling agent. And the material that contains coupling agent after immersion in water showed much higher resistance to mechanical properties than immersion in diluted nitric acid.

A Study of the Effect of (Cutting Speed, Feed Rate and depth of cut) on Surface Roughness in the Milling Machining

Ahmed Basil Abdulwahhab

Engineering and Technology Journal, 2015, Volume 33, Issue 8, Pages 1785-1797

The purpose of this research is to investigate the effect of the main factor of the surface roughness in aluminum alloy (Al-2024) as a workpiece and face milling machining by using computer numerical controlled milling machine with 50 millimeter diameters of the tool with triple cutting edges of carbides. The controlled factors were the speed, feed rate and the depth of cut and this factors effect on the surface roughness. The result of the tests showed that the surface roughness was likely to reduce when the cutting speed increase. It is found the surface roughness is increase with increasing both of feed rate and depth of cut. then drawing a charts illustrate the relationship between variables (cutting speed, feed rate and depth of cut) with surface roughness and analysis resulting data by utilizing the SPSS software to predicted surface roughness by using milling machining parameters and graphical analysis of the obtained data, The percentage of accuracy was 96%.

Influence of Cutter Width on Surface Roughness and Cutter Run Out During Horizontal Milling Operation

Saad Kareem Sather; Mohammad Naeem Houshi

Engineering and Technology Journal, 2010, Volume 28, Issue 24, Pages 6872-6887

This work focuses on studying the effect of cutter width on the surface roughness and cutter run out during horizontal milling operation, since the contact width in milling operations depends on the cutter geometry, especially (cutter diameter and width). So, three types of helical plain cutters with different widths are taken, (40,63,80mm), used in horizontal milling , when other cutter geometry parameters are
constant. As for workpiece material, it was from (structural steel (1.0402)) according to (DIN:C22) specifications, with different cutting conditions (spindle speed, feed rate, and depth of cut) for each cutter, results show that milling cutter, which has larger width (80mm), gives large surface roughness and cutter runout compared with
other two types. The results show that the surface roughness and cutter runout decrease with the increase of spindle speed under constant feed rate and depth of cut. While surface roughness and cutter runout increase with increase of feed rate for constant spindle speed and depth of cut .Both the results of fixing spindle speed and
feed rate with changing depth of cut show that surface roughness and cutter runout increase with the increase of depth of cut .In addition, cutter runout has a large effect on the surface roughness because it causes an increase in surface roughness of workpiece. Also surface roughness decreases at cutter (80mm width) which causes larger surface roughness than cutters (63mm and 40mm width),. For certain machining parameter as the spindle speed increases from (100 to 210 rpm), feed rate (35 mm/min) and depth of cut (0.1mm), the surface roughness value decreases from (1.61333 to 1.418333) μm at cutter (80mm width.) .When the cutter (63mm width) is used, the surface roughness decreases from (1.5222 to 1.3182) μm , and at cutter (40mm width) the surface roughness decreases from (1.4111 to 1.212) μm. Also in this study, multiple linear regression model is used within (SPSS) software to predict the experimental data for each surface roughness and cutter runout for different three cutters and results show from comparing between predicted and measured values that (SPSS) software gives high prediction accurate .

Prediction of Surface Roughness In Ceramic Cutting Tool Using SPSS Model

Saad Kariem Shather

Engineering and Technology Journal, 2010, Volume 28, Issue 4, Pages 759-767

The aim of this study is to predict surface roughness of workpiece which
machined by ceramic cutting tool using SPSS program and compare the results
with the experimental values which performed under different cutting
conditions.Cutting speed (60,80, 90,100,110 m/min ) and feed rate ( 0.1, 0.08, 0.3,
mm/rev ) and depth of cut ( 0.25, 0.5 ,0.7mm ) . Experiments were conducted to
predict the surface roughness of workpiece , the estimated result shows that there
is good greement between average experiments values such as Ra ( 1.27,0.92 )
and predicted values of Ra ( 1.2024, 0.8254 ) and Ra (2.15 ) also value ( 2.2774 )
and experimental values of Ra ( 2.51, 1.78 ).

Aِ studing The Effect of Chemical Composition of Workpiece on Built Up Edge Formation And Surface Roughness

Saad kariem shather

Engineering and Technology Journal, 2009, Volume 27, Issue 10, Pages 2061-2071

the phenomena built-up edge was the unwanted rough edge on cutting tool that is created by workpiece material welding onto the tool during cutting , occurs at the chip/tool interface when multiple materials are machined at low cutting speeds under high compressive stresses, this study involve relation between the chemical composition of workpiece and the built-up edge ( B.U.E ) formation which is generated on cutting tool during machining at dfferent types of low carbon steel
using turning machine , experments prove that increasing percentage of carbon on workpiece causes reduction in weight of cutting tool from ( 14.532g to 13.823g ) at cutting speed 40 m/min and 0.10% and 014% carbon also to 12.672g at 0.20% carbon because built – up edge was disappear and surface roughness was improving from the value ( 5.43μm ) at 0.10% carbon and to ( 3.362 μm ) at 0.14% carbon and to (3.543μm) at 0.20% carbon .