Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Boost converter

A Comparative Study of Perturb and Observe (P&O) and Incremental Conductance (INC) PV MPPT Techniques at Different Radiation and Temperature Conditions

Marwan E. Ahmad; Ali H. Numan; Dhari Y. Mahmood

Engineering and Technology Journal, 2022, Volume 40, Issue 2, Pages 376-385
DOI: 10.30684/etj.v40i2.2189

The biggest challenge in the solar system is to extract the maximum output power
from photovoltaic (PV) panels under different solar radiation and temperature
conditions. This paper presents a comparative study between perturb and observe
(P & O) and incremental conduction (INC) algorithms. These are the most popular
algorithms for tracking solar PV panels and extracting the maximum power point
(MPP) under different climate conditions. The studied PV system and the MPPT
techniques have been investigated by simulation using MATLAB/Simulink. The
simulation includes a boost converter, which increases the PV panel voltage by
controlling the duty cycle. The obtained results show that the P & O performance
close to MPP under constant test conditions (STC) is better than the variable
conditions due to oscillation. In contrast, the performance of the INC algorithm is
better than P & O in terms of speed to reach MPP, accuracy, and quality under
changes in radiation and temperature conditions

Analysis and Comparison of DC-DC Boost Converter and Interleaved DC-DC Boost Converter

Karrar S. Faraj; Jasim F. Hussain

Engineering and Technology Journal, 2020, Volume 38, Issue 5, Pages 622-635
DOI: 10.30684/etj.v38i5A.291

The step-up converters are widespread use in many applications, including powered vehicles, photovoltaic systems, continuous power supplies, and fuel cell systems. The reliability, quality, maintainability, and reduction in size are the important requirements in the energy conversion process. Interleaving method is one of advisable solution for heavy-performance applications, its harmonious in circuit design by paralleling two or more identical converters. This paper investigates the comparison performance of a two-phase interleaved boost converter with the traditional boost converter. The investigation of validation performance was introduced through steady-state analysis and operation. The operation modes and mathematical analysis are presented. The interleaved boost converter improves low-voltage stress across the switches, low-input current ripple also improving the efficiency compared with a traditional boost converter. To validate the performance in terms of input and output ripple and values, the two converters were tested using MATLAB/SIMULINK. The results supported the mathematical analysis. The cancelation of ripple in input and output voltage is significantly detected. The ripple amplitude is reducing in IBC comparing with a traditional boost converter, and the ripple frequency is doubled. This tends to reduce output filter losses, and size.

Comparative Study of Perturb & Observe, Modified Perturb & Observe and Modified Incremental Conductance MPPT Techniques for PV Systems

Mohanad H. Mahmood; Inaam I. Ali; Oday A. Ahmed

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 478-490
DOI: 10.30684/etj.v38i4A.329

This paper presents a modified maximum power point tracking algorithm (Modified MPPT) for PV systems based on incremental conductance (IC) algorithm. This method verified with the dynamic irradiance and sudden change of irradiance, the comparisons with conventional methods, for example, the perturbation and observation (P&O) and Modified perturbation and observation (Modified P&O) were performed. A photovoltaic (PV) panel was simulated and tested using MATLAB/Simulink based on PV panel at Power Electronics Laboratory. The results show that this method capable to find the maximum power point (MPP) under dynamic behavior faster than ( P&O) and Modified P&O). Reduced oscillation of MPP indicates enhanced efficiency, providing maximum power transfer to load