Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Glass fibers


Effect of Silica Powder Addition on Mechanical Properties of Polymer Laminate Composite

F.A. Hashim; M.S. Hamza; R.R. Abdullah

Engineering and Technology Journal, 2017, Volume 35, Issue 7, Pages 737-740

In this study laminate composites were prepared, one was reinforced with three layers of kevlar fibers at (Vf = 17.89%) and the second was reinforced with hybrid laminate with sequence of layers (Kevlar-Glass-kevlar (KGK)) at (Vf = 15.3%), samples were tested before and after silica addition at volume fraction (3%). Tests were (tensile, flexural, impact, hardness, and optical microscope), hand lay-up technique used to prepare samples. Matrix was unsaturated polyester resin. Results showed that mechanical properties (tensile strength, flexural strength, and fracture toughness) decreased after silica addition from (190 MPa, 610 MPa, 35.6 MPa.m1/2 ) to (100.5 MPa, 212MPa, 27.7 MPa.m1/2 ) respectively for composite reinforced with three layers of Kevlar fibers at (Vf = 17.89%) and from (175.5 MPa, 387 MPa, 32.36 MPa.m1/2 ) to (67.6 MPa, 210 MPa, 23 MPa.m1/2 ) respectively for laminate composite with layers (Kevlar-Glass-Kevlar (KGK)) at (Vf = 15.3%). Hardness increased after addition of silica from (79.25 to 81.2) for composite with three layers of Kevlar fibers at (Vf = 17.89%) and from (80 to 82.3) for composite with layers (Kevlar-Glass-Kevlar (KGK)). Optical microscope showed that layers were distributed in matrix and addition of silica leads to delamination of composite after using flexural test.

Effect of SiC Particulate on Glass Fibers Reinforced Polymer Composites in Erosive Wear Environment

R.H. Abdel-Rahim; Z.F. Atya

Engineering and Technology Journal, 2017, Volume 35, Issue 2, Pages 118-123

In this study the physical property, mechanical properties and erosion wear of pure epoxy and hybrid composites were studied. Composites were prepared and investigated by Hand lay-up molding. Pure epoxy and hybrid compositions were prepared, 4% and 8% volume fractions of glass fibers as reinforcement and 4% and 8% of SiC as filler particles. The investigated physical property is density while the mechanical property was hardness. Solid particles erosion wear tests are also carried out. The experimental results showed that increased volume fraction of glass fibers to (8%) led to increase the (density). The maximum density is equal (1.661gm/cm3). Hybrid composite with (Epoxy +8%GF+8%SiC) has the maximum hardness of (82) shore D. The particle-contained water jet type experimental erosion test results that the reinforcement volume fraction as well as particles distribution and bonding has considerable effect on the wear of epoxy composites. It was found that the better resistance was for hybrid composites (Epoxy+8%GF+4%SiC) at angle 30°, erodent size 800 μm, and time 10 hour.

Study the Mechanical and Physical Properties of Polyester Composite Reinforced by Multi Layers

Fadhil Abbas Hashim; Mohammed Sellab Hamza; Reham Raad Abdulla

Engineering and Technology Journal, 2016, Volume 34, Issue 9, Pages 1834-1843

In this research, a laminate composite has been prepared, using unsaturated polyester resin (UP) as a matrix reinforced with Kevlar fibers in different number of layers, glass fibers were added to the optimum product, by replacing one of the layers of Kevlar Fibers with a layer of Glass Fibers. Hand Lay-up method was used to prepare the test samples. To evaluate the composite material properties, tensile, hardness, impact, optical microscope tests were done.
The results of composite made of polyester reinforced with Kevlar Fibers show that the mechanical properties (Tensile strength, Modulus of elasticity, Hardness, Impact strength) increase with increasing the number of reinforced layers.
The best experimental values ofthe mechanical properties (Tensile strength, Modulus of elasticity, Hardness, Impact strength) were (190 MPa, 1.72 GPa, 79.25, and 68.75KJ/m2) respectively, for composite with three layers of Kevlar Fibers and then followed by composite with the sequence of layers (kevlar-glass-kevlar) and its mechanical properties (Tensile strength, Modulus of elasticity, Hardness, Impact strength) were (175.5 MPa, 1.69 GPa, 80, and 59.1 KJ/m2) respectively, Optical microscope shows welldistribution ofreinforcedlayers in composite.

Effect of Micro Powder on Mechanical and Physical Properties of Glass Fiber Reinforced Epoxy Composite

Aseel Basim Abdul-Hussein; Fadhel Abbas Hashim; Tamara Raad Kadhim

Engineering and Technology Journal, 2016, Volume 34, Issue 7, Pages 1402-1414

In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as the matrix, 3% volume fractions of Glass Fibers (G.F) as re enforcement and 2%, 4%, 6% volume fraction of micro powder (Aluminum Oxide Al2O3, Silicon Oxide SiO2 and Titanium Oxide TiO2) as filler. Studied the, hardness test, flexural strength, density, water absorption measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than nano composites material. Measured density results had show an incremental increase with volume fraction increase and water absorption, hardness, and flexural strength had show an incremental increase with volume fraction increase and with smaller particle size.

Mechanical Properties for Polymer Hybrid Composites Reinforced by Fibers and Particles

Ruaa Haitham Abdel-Rahim

Engineering and Technology Journal, 2015, Volume 33, Issue 3, Pages 635-643

The Mechanical properties of hybrid composites based on epoxy resin (ER) filled with metal powders (Al) and Glass fibers (GF) are studied. The specimens are prepared using hand lay-up techniques according to ASTM standard for different volume fractions of fiber, particles& matrix material. Glass fibers (GF) are one of the most useful filler materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. The epoxy was reinforced with GF:( metal powders)in the ratio 10%:40%, 20%:30%, 30%:20%, and 40%:10%. It was observed that in the ratio 40%:10% has the maximum(UTS), fracture strength, flexural strength, fracture toughness and hardness increase with the increase of volume fraction of fibers when compared to unfilled epoxy.

Effect of Nature Materials Powders on Mechanical and Physical Properties of Glass Fiber / Epoxy Composite

Aseel Basim Abdul-Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohammed

Engineering and Technology Journal, 2015, Volume 33, Issue 1, Pages 175-197

In the present study composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of nature material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite. True density results had shown an incremental increase with volume fraction increasing and water absorption, hardness, flexural strength and shear stress results had shown an incremental increase with volume fraction increasing with smaller particle size.