Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : radioactive elements


(Polyphenyl Sulfone - Polyether Sulfone) Blending to Performance Flat Sheet Membrane to Remove Some Heavy and Radioactive Elements from Phosphogypsum Waste

Waleed T.Rashid; Israa A. Alkadir; Moayyed G. Jalhoom; Khalid T. Rashid

Engineering and Technology Journal, 2021, Volume 39, Issue 3A, Pages 382-393
DOI: 10.30684/etj.v39i3A.1762

In this research, the traditional version of the phase inversion method was used to fabricate a flat sheet of a blended membrane. The method was involved using a polymer that blends polyether sulfone (PES) varied proportions (0,3,4 and 5 wt.%), and polyphenyl sulfone (PPSU) was 20wt%. It was found that with the addition of PES, the membrane properties increased, the best properties were with 4%wt. The ratio was chosen PES 4wt% to study the effect of time, temperature, and pressure on the rejection of heavy and radioactive elements. The increase in the porosity was with the addition of 4% PES. The rejection of heavy and radioactive elements for thUF membrane increases with increasing of the operating pressure and time. While by increasing the temperature, the rejection of heavy and radioactive elements for thUF membrane decreased. The rejection of K, Th, and Pb are higher than other elements, the order of the rejection is K˃Th˃Pb˃U˃Cd˃Zn˃Cu>Ni.

The Solubility of Phosphogypsum and Recovery of Heavy and Radioactive Elements

Waleed T. Rashid; Israa A. Alkadir; Moayyed G. Jalhom

Engineering and Technology Journal, 2020, Volume 38, Issue 10A, Pages 1470-1480
DOI: 10.30684/etj.v38i10A.907

The essential purpose of this paper is to illustrate and inspect the leaching characteristics of Iraqi Phosphogypsum (PG). The paper presents the results of the dissolution characteristics of heavy and radioactive elements from PG, which is a by-product result from the industry of phosphate fertilizers. Leachability of heavy and radioactive elements in deionized water that has been inspected under various states of leaching, including solid/liquid ratio (10, 20 and 50 /1g/L) and temperatures (25, 45 and 85 °C), with constant other parameters such as string speed (300 rpm) and contact time (60 minutes). For the most analysis elements, the progressive release of the metals, in addition to the major elements reflects high mobility. The mobility of trace metals in PG has been generally classified into three main degrees: (1) high mobility elements such as Pb, Zn, Mn, and Cr; (2) moderate mobility elements such as Sr, V, Ba,Y,Hg, K and Ni; and (3)l ow mobility elements like Ca,Cu,Fe, and Ag. The maximum concentrations of the most of the metals were attained from a leaching state of 10/1g/L. Regarding temperature, the experimental results revealed that the PG solubility to leaching out elements increases noticeably as the applied temperature ranges from 25 to 45 °C; after this degree, the leaching efficiency decreases. Chloride had a positive and negative effect on the solubility of phosphorus. Calcium chloride had an adverse effect on solubility and observed reduced solubility with increased chloride. While the positive effect of sodium and magnesium chloride was observed, the solubility ratio increased with the increase of chlorides. However, the effect of magnesium chloride was higher compared to the sodium chloride one