Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Solar photocatalysis


Optimum Conditions of Photocatalysis Process in a Wastewater Treatment

Mohammad F. Abid; Noor H. Hamza; Amir A. Abdul-Rahman; Kadhum N. Abid

Engineering and Technology Journal, 2014, Volume 32, Issue 13, Pages 3241-3256

The aim of the present study was to investigate the optimum operating conditions which yield the best performance of the photocatalysis process for the degradation of the synthetic dye in wastewater. The solar reactor was made up of a flat-plate colorless glass of dimensions of (1000 x 750 x 4 mm). The base of the reactor was made of aluminum. This geometry enables the light entering the liquid film from almost any direction to be reflected and can also be employed for the photocatalytic reaction. Various operating parameters were studied to investigate the behavior of the designed reactor like initial dye concentration (C=10-50 mg/L), loading of catalyst (CTiO2=300-800 mg/L), suspension flow rate (QL=0.3-2.0 L/min), pH of solution (5-9), and H2O2 concentration (CH2O2=200-1000 mg/L). The operating parameters were optimized to give higher efficiency to the reactor performance. Optimum parameters of the photocatalysis process were loading of catalyst (400mg/L), suspension flow rate (0.5L/min), H2O2 concentration (400mg/L), and pH=5. The designed reactor when operating at optimum conditions offered a degradation of MV up to 0.9527 within one hours of operation time, while a conversion of 0.9995 was obtained in three hours. The product water was analyzed using UV-spectrophotometer and FTIR. Analysis of the results confirmed that produced water from the solar reactor system could be safely recycled and reuse.

Removal of Methyl Violet Dye From Synthetic Wastewater Using a Hybrid Detoxification Process

Mohammad F. Abid; Amir A; Abdul-Rahman; Noor H. Hamza

Engineering and Technology Journal, 2014, Volume 32, Issue 6, Pages 1544-1561

The aim of the present study was to design a solar reactor and analyze its performance for removal of methyl violet dye (MV) from water with titanium dioxide as the photocatalyst. The solar reactor was made up of a flat-plate colorless glass of dimensions 1000 x 750 x 4 mm. The base of the reactor was made of aluminum. Various operating parameters were studied to investigate the behavior of the designed reactor like initial dye concentration (CMV=10-50 mg/L), loading of catalyst (CTiO2=200-800 mg/L), suspension flow rate (QL=0.3-2 L/min), pH of suspension (5-10), and H2O2 concentration (CH2O2=200-1000 mg/L). The operating parameters were optimized to give higher efficiency to the reactor performance. The designed reactor when operating at optimum conditions offered a degradation of MV up to 95.27% within one hours of operation time, while a conversion of 99.95% was obtained in three hours. The effluent from the photocatalytic reactor was fed to a LPRO separation system which produced a permeat of turbidity value of 0.09NTU. The product water was analyized using UV-spectrophotometer and FTIR. The analysis results confirmed that the water from the Hybrid-system could be safely recycled and reuse. It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model.