Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Anode


Using Microbial Desalination Cell to Treat Iraqi Wastewater

Talib R. Abbas; Majid A. Dixon; Mustafa Hussein Al-Furaiji

Engineering and Technology Journal, 2019, Volume 37, Issue 7A, Pages 227-234
DOI: 10.30684/etj.37.7A.2

A Three-chambers MDC was made using three identical cubical
plexi-glass sections. Each chamber has an effective volume of 35 cm3. An anion
exchange membrane (AEM) was used to separate the anode from the
desalination chambers while a cation exchange membrane (CEM) was used to
separate the cathode from the desalination chambers. Two graphite sheets were
used as anode and cathode electrodes. Biotic experiments have included aircathode MDC fed with synthetic municipal wastewater, Bio-cathode MDC in
which the cathode chamber was inoculated with microalgae as an oxygen
source and air-cathode MDC was fed with floated oil layer in the anode
chamber as an organic source. Maximum power density obtained from the
MDC was 121 mW/m2. The corresponding current density was 410 mA/m2.
Maximum power density obtained in this study was in consistency with that
presented in previous studies. Maximum coulombic efficiency and charge
efficiency achieved were 9% and 165% respectively. The results of this study
confirmed the validity of using MDC technology to treat municipal wastewater
as well as oil, desalinate brackish water and generate electric power
simultaneously. Moreover, the results revealed the possibility of using mixed
culture algae, available in the Iraqi environment, in the cathode chamber as an
oxygen source to develop more energy efficient MDC. Further study deals with
different system configurations and different operating conditions are needed.