Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Dimensional accuracy


Experimental Investigation of Dimensional Accuracy in Non-traditional Sheet Metal Spinning Process for Producing Rectangular Spun Part

ِِAmmar M. Saleh; Aseel H. Abd; Aqeel S. Bedan

Engineering and Technology Journal, 2021, Volume 39, Issue 9, Pages 1369-1375
DOI: 10.30684/etj.v39i9.1974

The non-conventional spinning process was adopted for producing polygons, but one of the process limitations is the error between design and the final product especially with no-mandrel. Dimensional accuracy was adopted for this purpose which gives an indicator of the ability of the formed part to matches the design and checking validated of the adopted methodology for producing rectangular cross-section spun parts, by comparing the coordinating points of real part with the points of the design model. The point of a real part was measured by using a sphere probe fixed on the three-axis milling machine and capturing the data of machine axis movements for the center location of the probe, also, the measurements oppositely took place, by offsetting the points of design along the normal vector for comparison with the real part points. Three parameters were invested for study the effects on the dimensional accuracy, these parameters are spindle speed (48, 68, and 135 RPM), feed ratio (0.16, 0.22, and 0.32 mm/rev), and the ball diameter of the forming tool (16, 22 and 25 mm). The results show that tool ball diameter mainly affecting dimensional accuracy with a higher value of average error reach (6.47mm) when 16mm diameter of tool ball was used, on the other hand, the minimum average error was 1.705mm at low spindle speed.

Optimization of Plasma Cutting Parameters on Dimensional Accuracy and Machining Time for Low Carbon Steel

Sami A. Hamood; Vian N. Najm

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1160-1168
DOI: 10.30684/etj.v38i8A.1151

This work aims to study the influence of plasma arc cutting parameters on dimensional accuracy and machining time for mild steel (1010) material with the thickness (4 mm). Selected three cutting parameters (arc current, cutting speed, and arc distance) or the experimental work. 12 tests have been performed at each test one parameter has been changed with four various levels and other parameters are constant. The influence of the cutting parameters on response results (dimensional accuracy and machining time) have been studied and analyzed by using response surface methodology (RSM) using the second-order model and main effect plot have been generated of each parameter on response results by using ANOVA depended on results of response surface analysis. The results of the response surface analysis showed that the important influencing parameters on dimensional accuracy were cutting speed and arc current as well as on deviation of dimensional accuracy, and the machining time is further affected with the current more than the cutting speed and the standoff distance. The outcomes of response surface analysis showed that the optimal setting of the cutting parameters to obtain at high dimensional accuracy were (arc current= 110 A, cutting speed = 4000 m/min, arc distance = 2mm) and to obtain on less machining time was (arc current= 110 A, cutting speed = 4000 m/min, arc distance = 5mm)