Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Activated carbon


Adsorption Desulfurization of Actual Heavy Crude Oil Using Activated Carbon

Yusra A. Abd Al-Khodor; Talib M. Albayati

Engineering and Technology Journal, 2020, Volume 38, Issue 10A, Pages 1441-1453
DOI: 10.30684/etj.v38i10A.615

The strict new regulations to reduce the sulfur content of fuel require new economical and efficient ways to remove the sulfur from the organic sulfur components. In the current work, sulfur was removed from the actual crude oil containing 2.5 wt.% from southern Iraq, specifically the Halfaya Oil Field was studied using adsorption desulfurization with activated carbon (AC). The effects of different operating conditions, including the dose of AC (0.2-1.0 gm), time (15–120 min) and temperature (30–50°C) were investigated. The best operating conditions were obtained as 0.8 gm AC, 90 minutes and 50℃, respectively. Langmuir, Freundlich and Temkin isotherm models were implemented. The steady data were best denoted via Temkin models with correlation coefficient (R2= 0.974). The kinetics sulfur components on activated carbon were examined by using pseudo-first order, pseudo-second order kinetics models and Intra-Particle diffusion. The adsorption process can be well described by pseudo-first order adsorption kinetic model with correlation coefficient (R2 = 0.9552). Thermodynamic parameters, which include Gibbs Free Energy (ΔGo), Enthalpy (ΔHo) and Entropy (ΔSo), were determined in the present research and showed that the adsorption of sulfur components on activated carbon is spontaneous, endothermic and increases the randomness of the sulfur compounds on the surface of the adsorbent. The content of sulfur in the treated crude oil was reduced from 2.5% to 1.8% corresponding to a desulfurization efficiency of 28%.

Textile Dye Removal by Activated Date Seeds

Seroor A. Khaleef; Huda T. Hamad

Engineering and Technology Journal, 2019, Volume 37, Issue 2C, Pages 242-247
DOI: 10.30684/etj.37.2C.7

The objective of the study was to prepare activated carbon from date seeds (ADS) and use it as a medium for textile dye adsorption. Batch adsorption of reactive green dye showed that dye adsorption depends on the contact time, the dye concentration, and the pH equilibrium. Different concentrations of the prepared activated carbon were used with different dye concentrations and evaluated for dye removal efficiency. The maximum dye adsorption in this study was achieved after 270 min at a pH range of 5-9. In this study, the functional groups in the prepared ADS were identified using Fourier transform infrared (FTIR) while the crystal size was determined using an X-ray diffractometer (XRD). The Langmuir and Freundlich isotherm equation were used to study the adsorption kinetics, isotherms, and dye desorption while the pseudo-second-order kinetics was used to analyze the equilibrium adsorption data of the reactive green dye on the prepared ADS. The dyes’ adsorption kinetics followed pseudo-second-order kinetics, which is adjudged as the best in adsorption studies. The equilibrium data were best fitted with the Freundlich isotherm model. Conclusively, the adsorption of dye onto the prepared ADS was observed to be an endothermic physical adsorption process.

Chlorine Removal with Activated Carbon Using Bubble Column

Naseer A. Al Habobi; Natheer Nori Ismail; Moayad Fadhel Hamad

Engineering and Technology Journal, 2012, Volume 30, Issue 9, Pages 1528-1537

Bubble column slurry reactor was used for the measurements of gas adsorption
and ion-exchange in this work. Adsorption of chorine (dissolved in water) on
activated carbon was carried out in the same reactor. The effect of gas flowrates uG
0.016 m s–1-0.027 m s–1 which covers the boundaries of the following four regimes:
bubbly flow, first transition, second transition, and coalesced bubble and solid
concentrations were investigated. In addition of studying the pH which gives an
indication for Hypochlorous Acid HOCl, the most active sanitizer form of Free
Chlorine. These design guidelines provide a good starting point for system of
removing chlorine from water at activated carbon concentration 20 gm/L, gas
velocity 0.023 m/s and contact period of time more 17 minutes.

Simulation Study and Comparison Green Freeze Technology Utilizing with Theory of Different Adsorption Working Pairs of Solar Adsorption Refrigeration

Faiza Mahdi Hadi

Engineering and Technology Journal, 2012, Volume 30, Issue 3, Pages 84-97

In this research a study of the theory of six different adsorption pairs to check
and choose the best adsorption pair in terms of adsorption capacity and the effect of
high and low temperature on it. It has been shown that the best adsorption pair at
the temperature 25oC is the activated carbon fiber with methanol (ACF +
CH3OH). Where the adsorption capacity is = 0.45 ACF x , followed by granules
of activated carbon with methanol (AC + CH3OH) and adsorption capacity is
= 0.3 AC x by more than half compared to a pair of activated carbon fibers. Then,
four adsorption pairs have been selected for solar adsorption ice maker system and
a couple for solar adsorption chiller system. The application of Excel has been used
to solve governing equations and mathematical model of thermal balance
simulation the largest amount of ice produced, the highest coefficient of
performance for all pairs adsorption mentioned at the best operational temperature,
it was found that the activated carbon fiber with methanol, the largest amount of
ice produced 2.55kg and the highest coefficient of performance of 0.38 in the
adsorption ice maker at operating temperature of generator is (110oC). The
Adsorption chiller for a couple, silica gel with water, the best in terms of impact
with the cooling effect and coefficient of performance of the highest at temperature
range of (64 -110oC).

Modeling and Simulation of Flue Gas Desulfurization Using Slurry of Fine Activated Carbon Particles

Asmaa I. Eliass; Neran K. Ibrahim

Engineering and Technology Journal, 2010, Volume 28, Issue 12, Pages 2294-2307

The main objective of the present work is to investigate the
feasibility of using a slurry of fine activated carbon particles,
dp<1mm, in a fixed bed reactor for the removal of sulfur dioxide
from simulated flue gas (air, SO2) stream. A mathematical model
governing the desulfurization process was proposed. The partial
differential equations which describe the adsorption of SO2 from a
moving gas stream to the sorbent bed were solved using a finite
difference method. The kinetic parameters of the mathematical
model were obtained from a series of experimental desulfurization
runs carried out at isothermal conditions and different operating
conditions; bed temperature (333K-373K), initial SO2 concentration
(500ppm-2000ppm) and static bed height (10cm-24cm). The results
showed that the use of fine activated carbon particles improved the
removal efficiency to about 97%. The verification of the simulation
and experimental results showed that the proposed model gave a
good description of the desulfurization process with 95% confidence
level

Removal of Lead and Copper Ions onto Granular Activated Carbon in Batch and Fixed Bed A Dsorber

Abbass H. Sulaymon; Balasim A. Abid; Jenan A. Al Najar

Engineering and Technology Journal, 2009, Volume 27, Issue 12, Pages 2336-2351

The adsorption of lead and copper ions onto granular activated carbon (DARCO
20-40 mesh) in a single component system has been studied using fixed bed adsorbers.
A film-pore diffusion model has been developed to predict the fixed bed breakthrough
curves for the two metal ions. This model takes account both external and internal
mass transfer resistance as well as axial dispersion with non-linear isotherm. The
effects of flow rate, bed height and initial metal ion concentration has been studied.
Batch adsorber experiments were conducted to estimate the parameters required for
fixed bed model, such as adsorption equilibrium isotherm constants the external mass
transfer coefficient and pore diffusion coefficient by fitting the experimental data with
theoretical model. The batch isotherm experimental data was correlated using
Langmuir and Freundlich isotherm models. The adsorption isotherm data follow the
Langmuir model better than Freundlich model. The pore diffusion coefficient was
obtained using pore diffusion model for batch adsorber by matching between the
experimental data and predicted data from the model. The results show that the filmpore
diffusion model used for fixed bed adsorber provide a good description of the
adsorption process for adsorption of metal ions Pb(II) and Cu(II) onto activated carbon
in fixed bed adsorber.