Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Integral


Direct Torque Control for Permanent Magnet Synchronous Motor Based on NARMA-L2 controller

Huda B. Ahmed; Ali H. Almukhtar; Abdulrahim T. Humod

Engineering and Technology Journal, 2016, Volume 34, Issue 3, Pages 464-482

This paper investigates the improvement of the speed and torque dynamic responses of three phase Permanent Magnet Synchronous Motor (PMSM) using Direct Torque Control (DTC) technique. Different torques are applied to PMSM at different speeds during operation to ensure the robustness of the controller for wide torque variations. Optimal PI controller is used to modify the response of DTC. The optimal gains of PI controller are tuned by Particle Swarm Optimization (PSO) technique. Neural Network controller is called the Nonlinear Autoregressive-Moving Average (NARMA-L2) which is trained based on optimal PI controller (PI-PSO) data. The results show the superiority performance of using NARMA-L2 controller on PI-PSO controller for different speeds and load change. The overall simulation and design of the scheme are implemented Using MATLAB/Simulink program.

Speed Control For Separately Excited DC Motor Drive (SEDM) Based on Adaptive Neuro-Fuzzy Logic Controller

Alia J. Mohammed

Engineering and Technology Journal, 2013, Volume 31, Issue 2, Pages 277-295

This paper presents an application of Fuzzy Logic Control (FLC) in the separately excited Direct Current (DC) motor drive (SEDM) system; the controller designed according to Fuzzy Logic rules. Such that the system is fundamentally robust. These rules have capability learning, can learn and tune rapidly, even if the motor parameters are varied. The most commonly used method for the speed control of dc motor is Proportional- Integral- Derivative (PID) controller. Simulation results demonstrate that, the control algorithms Neuro-Fuzzy logic and PID, the dynamic characteristics of the SEDM (speed, torque, as well as currents) are easily observed and analyzed by the developed model. In comparison between the Neuro-fuzzy logic controller and PID controller, the FLC controller obtains better dynamic behavior and superior performance of the DC motor as well as perfect speed tracking with no overshoot, and the proposed controller provides high performance dynamic characteristics and is robust with regard to change of motor speed and external load disturbance. This paper also discusses and compares the speed control systems of SEDM using PID- controller conventional and Fuzzy Logic-controller. The entire system has been modeled using MATLAB 10a/SIMULINK toolbox.