Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Cutting parameters


Experimental Investigation of Surface Roughness Using Uncoated and Coated Tungsten Carbide Cutting Tool in Turning Operation

Frzdaq N. Thamer; Ali Abbar; Farhad. M. Othman

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 768-778
DOI: 10.30684/etj.v39i5A.1887

The cutting process is an important process of industrialization. It is requisite to using advantage quality cutting tools in order to preserve the type of product. Coating on the cutting tool has a substantial effect in terms of mechanical properties and the end results of the product. The cutting tool can be manufactured in various material types, but today's cemented tungsten carbide is the most commonly used material in the tool industry because its properties comply with manufacturers' requirements. This study investigates the impact of an Al2O3 coated cutting tool relative to an uncoated cutting tool on the dry cutting process. Different parameters are used in the cutting process when cutting the metal. The cutting parameters used are feed rate and cutting speed, An analysis of the effects of these parameters on the surface roughness. In this analysis, the surface roughness are measured for components turned from steel1040, The L9 Taguchi orthogonal arrays and analyses of variance (ANOVA) was employed to analyze the influence of these parameters. In the case of (uncoated, Al2O3 coated tool), the better surface roughness (SR) with used feed rate (0.05 mm / rev) and cutting speed (140 m/min) where the roughness value was (0.81μm) and (0.78μm) Respectively. The results of this study indicate that the ideal parameters combination for the better surface finish was high cutting speed and low feed rate.

Prediction the Effect of Cutting Parameters on Surface Roughness Using Taguchi Method

Laith A. Mohammed; Ahmed A. Duroobi

Engineering and Technology Journal, 2013, Volume 31, Issue 17, Pages 3334-3342

In this study, the prediction of surface roughness of milled surfaces was carried out
using Taguchi Method with four inputs, namely, cutting direction, stepover, feed per
tooth and workpiece surface geometry. A systematic approach to obtain an optimal
surface roughness was employed to consider the effects of Taguchi method for this
application using CNC milling machine with ball mill cutter. The results show that the
Taguchi method is an effective tool in predicting the optimum factors to obtain
minimum surface roughness, which are stepover, surface type, feed per tooth and
cutting direction respectively.