Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : CNC milling machine

Automatic Tool Path Generation for Parametric Surfaces

Tahseen F. Abbas; Sara J. Shawi

Engineering and Technology Journal, 2019, Volume 37, Issue 1A, Pages 20-27
DOI: 10.30684/etj.37.1A.4

A tool path generation algorithm has been proposed and implemented in the presented work. The aim of the development of tool path algorithm is to machine parametric surface with a given tolerance and scallop height. The algorithm proposes dividing the desired parametric surface to several linear segments depending on the desired accuracy of the parametric surface. The Bspline technique has been used to generate the required data of the parametric surface. After generating the tool path, the cutter movement has been simulated allowing to reduce the cutting time and cost. The tool path is verified on the C-TEK CNC milling machine by machining six models. Various tool path strategies are also discussed and compared with the developed algorithm. The machining performance includes machining time; dimensional accuracy and surface roughness were measured for result evaluation. A measuring method has been proposed and implemented to measure the accuracy of the final 3D models. A Digital 3D-Touch Probe was used. The statistical method of error assessment and similarity factor has been implemented in this work to show the efficiency of the proposed works. The results showed that the similarity factor of the proposed works were (87.6%) for one model, and (85.9%), (89.6%) for other models. Matlab (v.7.1), UG-NX8.5, and VERCUT software have been used in this work for implementation. A comparison between the proposed method and UG-NX8 has been done to present the flexibility of the proposed method.

The Effects of Process Parameters on Residual Stresses in Single Point Incremental Forming of A1050 Aluminum Using ANOVA Model

M. Kamal; S. Mohammed; A.S. Bedan

Engineering and Technology Journal, 2017, Volume 35, Issue 1, Pages 41-48

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms and by this way the sheet with pure deformation stretching. The aim of the present work is to inspect, experimentally, the state of the residual stresses induced in SPIF parts made by A1050 aluminum. The forming surface was measured at four different angles using a ORIONRKS 6000 test (the X-ray diffraction technology was used to detect the residual stress) measuring instrument with the angles (0o, 15o, 30o and 45o) and the average residual stress value is recorded in (MPa), the residual stress in original blanks is (-6.29MPa). This specialized stress analysis system using the side-inclination method includes stress analysis software, the stress analysis sample stand and X-ray tube. A comparison study is made for tabulated values and experimental values for residual stress by using ANOVA model with the contribution of rotational speed, feed rate and forming depth with respect to residual stress is (63.7, 4.3 and 32)% respectively..

Modeling and Optimization of Machine Parameters Using Simulated Annealing Algorithm (SAA)

Aqeel Sabree Bedan; Alaa Hassan Shabeeb; Hassan Nemaha Al-Sobyhawe

Engineering and Technology Journal, 2016, Volume 34, Issue 7, Pages 1473-1482

The present work deals with the mathematical modeling and analysis of machining response such as the surface roughness in the milling of aluminum alloy (AA6061). There are several machiningvariableslikerotational speed, depth of cut and feed rate used to find the quality of surface quality.
Simulated Annealing Algorithm (SAA) is utilized to develop an effective mathematical model to predict optimum level. In simulated annealing algorithm (SAA), an exponential cooling program depending on Newtonian cooling is applied and experimentation is done on choosing the number of iterations for each step. The SAA is used to predict the cutting variables (rotational speed,feed rate and depth of cut) on productquality in dry millingof Al 6061 based on Taguchi‘s orthogonal array of L9 and analysis of variance (ANOVA) were apply to determination the important factors that effect on surface quality.
At last, tests were conducted to confirm by making a comparison between the experimental results and the model developed. The experimental results have shown the performance ofmachining in the milling can be improved effectively using this algorithm.