Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Nanocomposites


Evaluation of the Microstructure and Mechanical Properties of Al / Fe3O4 Nanocomposites

Suaad M. Jiaad; Khansaa Salman; Ahmed A. Hussein

Engineering and Technology Journal, 2021, Volume 39, Issue 11, Pages 1632-1638
DOI: 10.30684/etj.v39i11.2080

The goal of this research is to study the microstructural analysis and mechanical properties of an aluminum matrix reinforced with different amounts of nano Fe3O4 at (2, 4, 6, 8, and 10wt. %). Al/ Fe3O4 nanocomposites specimens were prepared using the powder metallurgy route. Many examinations, including Field Emission Scanning Electron Microscopy (FESEM) and X-Ray Diffraction (XRD) analysis, were performed on the specimens in this study to determine the microstructure and phases of the nanocomposites. Mechanical tests, such as compressive, microhardness, and wear tests, were also performed to assess the mechanical properties of the nanocomposites. The results of this study show that Fe3O4 nanoparticles have been homogeneously dispersed in the Al matrix by FESEM and XRD examination. While the mechanical tests show improving the compressive strength at 6 wt.% by 5.36%, the highest microhardness was at 10% by 101.6% compared with the pure Al, and improving the wear rate.

Preparation and Study of Flexural Strength and Impact Strength for Hybrid Composite Materials used in Structural Applications

Teeb A. Mohameed; Sihama I. Salih; Wafaa M. Salih

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1117-1125
DOI: 10.30684/etj.v38i8A.655

Many of the polymeric materials used for structural purposes have weak mechanical properties, these characteristics can therefore be improved by preparing a hybrid laminar composite. In this work use melting mixing method using screw extruder to prepare sheets of polymer blends and nanocomposites based on polymer blends, and using a hot hydraulic press machine to prepared hybrid laminates composites. Two groups of hybrid laminar composites were prepared, the first group is consist of [((94%PP: 5%PMMA: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF] and the second group is [((94%PP: 5%UHMWPE: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF]. The results illustrated the impact strength and fracture toughness are increase with increased weight percentage of Kevlar fiber in for both groups of laminar composites and the highest values for two groups are (58.1, 54.95 KJ/M2) and (8.4, 9.16 MPa√m) respectively, any that, at the rate of increment reached to (120.4%, 107%) and (52.7%, 66.5%) respectively, compared with the neat PP. Moreover, the flexural strength values of the first group samples of hybrid laminar composite remained constant, when added kevlar fiber to nanocomposite. While, the flexural strength values of the second group samples of hybrid laminar composite increase with increase the ratio of kevlar fiber in composite to reach the maximum values (92 MPa) at 8% wt. of kevlar fiber, any, at the rate of increment reached to 39.4% compared with the neat PP. As well as, the results shown that the flexural properties and fracture toughness of the second group samples higher than they are for the first group samples