Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : slip


Numerical Study of Bond Stress-Slip Relationship in Large Scale Reactive Powder Concrete Beams

Eyad K. Sayhood; Sameh B. Tobeia; Ammar A. Ali

Engineering and Technology Journal, 2019, Volume 37, Issue 12A, Pages 496-505
DOI: 10.30684/etj.37.12A.1

As the reactive powder concrete (RPC) represents one of the ultra-high performance concrete types that recently used in public works and in the presence of several attempts that aims to examine the behavior of RPC, this work aims to theoretically study the bond stress between RPC and steel bars and the corresponding slip for large reactive powder concrete beams by using finite element models done by ANSYS 16.1 software. Where, these numerical models were verified through several comparisons between their results, and the experimental one from previous work, in which good agreement were achieved. The effects of several parameters on the bond stress were studied, the parameters include concrete compressive strength, and steel fibers content, bar diameter, length of the developed bar and concrete cover thickness.

Effect of Addition Carbon And Glass Fibers On Bond Strength of Steel Reinforcement and Normal Concrete

Rana Hashim Ghedan

Engineering and Technology Journal, 2013, Volume 31, Issue 1, Pages 81-97

The concept of composite materials using fibers as reinforcement is not new. The aim of composing materials is to improve some properties of the original materials. In civil engineering, fiber reinforced concrete was one of the topics of interest. Using fibrous concrete in reinforced concrete structures arises a question of how does it affect the bond strength between the concrete and reinforcing steel bars. Thus, the present experimental study are carried out to have a clear understanding of the bond strength between normal concrete with two selected types of fibers which were carbon and glass fiber and steel reinforcing bars. Forty five pullout cubic specimens of size 150mm were fabricated and tested to serve that purpose. They were divided into five groups to study the effect of some selected parameters such as, type of fiber (carbon and glass),reinforcing bar diameter(12mm,16mm and 20mm)and fiber to cement ratio(f/c) by weight(0.75% and 1% ). Also, three concrete cubes having the same size of the pullout specimens from each concrete mix were tested in compression to find their compressive strength. It was found that the addition of glass fiber with bar diameter=16mm has much effect in enhancing bond strength than that enhancement accrued by addition of carbon fiber, the bond strength increases by about 13.6 % and 4.5 % with the addition of 0.75% and 1% glass fiber. On the other hand, the bond strength increases as bar diameter decreases.The addition of the carbon or glass fibers increases the bond strength for specimens with smaller bar diameter and vice versa and the fiber(either glass or carbon) to cement ratio of 0.75% give higher bond strength than that of 1.0%.