Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : PMMA


Al2O3-TiO2-PMMA Bio-Composite Coating Via Electrostatic Spray Technique

Rasha A. Issa; Mohanad N. Al-Shroofy; Hanna A. Al-Kaisy

Engineering and Technology Journal, 2021, Volume 39, Issue 3A, Pages 504-511
DOI: 10.30684/etj.2021.168129

This work aims preparation of polymer-based biocomposite coating by electrostatic spray method onto 316L stainless steel substrate, the present work will compare the effects of incorporation of Al2O3 and TiO2 particles at a different percentage of (10,15 and 20 % wt. from Al2O3 and TiO2 with (90,85 and 80% wt. PMMA - based electrostatic deposition coating is studied. The structure and chemical composition of composite coatings were studied by using (SEM) & (EDS) and mechanical properties (Microhardness and adhesion strength) of Al2O3-TiO2-PMMA composite coating. The SEM&EDX result showed that the composite coating to be dense with uniform dispersants and continuous with a well homogenous mixture within coating exhibits a much-increased Microhardness and remarkably improved adhesion strength.

Preparation and Study of Flexural Strength and Impact Strength for Hybrid Composite Materials used in Structural Applications

Teeb A. Mohameed; Sihama I. Salih; Wafaa M. Salih

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1117-1125
DOI: 10.30684/etj.v38i8A.655

Many of the polymeric materials used for structural purposes have weak mechanical properties, these characteristics can therefore be improved by preparing a hybrid laminar composite. In this work use melting mixing method using screw extruder to prepare sheets of polymer blends and nanocomposites based on polymer blends, and using a hot hydraulic press machine to prepared hybrid laminates composites. Two groups of hybrid laminar composites were prepared, the first group is consist of [((94%PP: 5%PMMA: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF] and the second group is [((94%PP: 5%UHMWPE: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF]. The results illustrated the impact strength and fracture toughness are increase with increased weight percentage of Kevlar fiber in for both groups of laminar composites and the highest values for two groups are (58.1, 54.95 KJ/M2) and (8.4, 9.16 MPa√m) respectively, any that, at the rate of increment reached to (120.4%, 107%) and (52.7%, 66.5%) respectively, compared with the neat PP. Moreover, the flexural strength values of the first group samples of hybrid laminar composite remained constant, when added kevlar fiber to nanocomposite. While, the flexural strength values of the second group samples of hybrid laminar composite increase with increase the ratio of kevlar fiber in composite to reach the maximum values (92 MPa) at 8% wt. of kevlar fiber, any, at the rate of increment reached to 39.4% compared with the neat PP. As well as, the results shown that the flexural properties and fracture toughness of the second group samples higher than they are for the first group samples

Preparation and Characterization of Polymer Blend and Nano Composite Materials Based on PMMA Used for Bone Tissue Regeneration

Sally A. Kadhum Alsaedi; Sihama I. Salih; Fadhil A. Hashim

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 501-509
DOI: 10.30684/etj.v38i4A.383

As the elderly population increases, the need for bone loss treatments is increasing. Vital substances used in such treatments are required to continue for a longer period and work more effectively. The particularly important biological material is poly methyl methacrylate (PMMA) bone cement, which is widely used in damaged bone replacement surgery. So, this study focused on the role of added some nanoparticles consist of zirconia (ZrO2), and magnesia (MgO) on the binary polymeric blend (Acrylic bone cement: 15% PMMA) for a bone scaffold. Where, ZrO2 and MgO nanoparticle was added with selected weight percentages (0, 0.5, 1, 1.5 and 2 wt.%), which were added to the polymer blend matrix. Some mechanical properties were studied including the tensile strength and young modulus for all the prepared samples. The chemical bonding of nanoparticles and synthetic binary polymeric blend composites was evaluated by Fourier Transform Infrared (FTIR) spectroscopy. Tensile strength and young modulus of binary polymeric blend reinforced with 1.5 wt.% ZrO2, and 1 wt.% MgO, significantly increased. The surface morphology of the fracture surface of tensile specimens was examined by Scanning electron microscope (SEM). The SEM images confirmed that the homogenous distribution of nanoparticles (ZrO2, and MgO) within the polymeric blend matrix.

Development of Surface Roughness and Mechanical Properties of PMMA Nanocomposites by Blending with Polymeric Materials

Hussein M. Sadeq; Sihama I. Salih; Auda J. Braihi

Engineering and Technology Journal, 2019, Volume 37, Issue 12A, Pages 585-565
DOI: 10.30684/etj.37.12A.10

This work aims to a development of mechanical properties of PMMA that is utilized in denture material, by using two types of polymers; blends (PMMA:2%NR) and (PMMA:2%SR) as a matrix materials strengthen with natural nanoparticles from the pomegranate peel powder (PPP) that were added at different weight fractions (0.0, 0.1%, 0.3%, 0.5% and 0.7%). Two groups of bio nanocomposites specimens were prepared, using (Hand Lay-Up) method. Experimental tests were carried out on surface roughness, hardness and wear rate as well as analyzing of FTIR test. The minimum values of surface roughness and wear rate were reached 1.51 nm and 0.317×10-8 g/cm respectively for polymer blend nanocomposite ((PMMA:2%NR): 0.7% PPP). Whereas, the maximum value of Shore D hardness reached 90 for the same sample of nanocomposites. According to these results, it can be a concluded that the addition of Nano pomegranate powder and natural rubber can develop the mechanical properties of PMMA material used in medical applications.

Study Compression, Hardness and Density properties of PMMA Reinforced by Natural Powder Used in Denture Base applications

Jawad Oleiwi; Q. A. Hamad; N. N. Kadhim

Engineering and Technology Journal, 2019, Volume 37, Issue 12A, Pages 522-527
DOI: 10.30684/etj.37.12A.5

 This research had been done to investigate the effect of adding natural powder of Pistachio Shell to PMMA, which popularly used in denture applications. The powder added in different weights fraction (3%, 6%, 9%, and 12%), and different average particle size (53µm, 106 µm, 150 µm, and 212µm %), and studying Compression Strength, Surface Hardness, and Density properties. Hand Lay-Up represented the method used to prepare the specimens in this research. The results were statistically analyzed by SPSS (one-way ANOVA) to determine the mean value and showed a significant difference for each particle size. The highest value of compression strength and surface hardness of PMMA composite specimens happened at (9%wt.) of the filler particles. Also the results represented that the density values for the composite specimens are increased with increasing the weight fraction of the filler particles.

Optical and Thermal Characterizations of PMMA Composites

Raghad S. Al-Khafaji; Kareem A. Jasim; Adil M. Ibraheim

Engineering and Technology Journal, 2019, Volume 37, Issue 2B, Pages 61-66
DOI: 10.30684/etj.37.2B.5

Thick composite films were prepared employing hand – layup method . A definite quantity of PMMA ( 98%wt ) , fixed content ( 2% wt ) of rutile titanium dioxide TiO2 , gamma alumina ( ᵞ- Al2O3 ) and Zirconia powder ( ZrO2 ) , were added to polymer solution gradually and separately. Optical constants were obtained of the prepared samples using spectrometer (UV- VIS). The prepared composite samples were thermally characterized by differential scanning calorimeter ( DSC ). We notice increasing value of glass temperature and differential heat capacity ( ∆Cp ) for composites compared with pure PMMA .

Development the Physical Properties of Polymeric Blend (SR/ PMMA) by Adding various Types of Nanoparticles, Used for Maxillofacial Prosthesis Applications

Sihama I. Salih; Jawad K. Oleiwi; Hajir M. Ali

Engineering and Technology Journal, 2019, Volume 37, Issue 4A, Pages 120-127
DOI: 10.30684/etj.37.4A.2

As maxillofacial defects increased due to cancer; it became necessary to select high-quality prosthetic materials in this field. Silicone rubber is widely used in damaged maxillofacial affected areas replacement surgery as bio material. The aim of this research, prepared a nano composites materials, from polymer blend (silicone rubber: 5% PMMA) reinforced by different types of nano-powders; pomegranate Peels Powder (PPP), Seeds powder of dates Ajwa (SPDA) and TiO2 nano-powders with loading level (0.0, 0.1, 0.2, 0.3 and 0.4%). Some physical properties such as density, water absorption, and Thermo-Physical test, FTIR analysis, as well as, FTIR, antibacterial tests were done on prepared samples. The results showed that the composites material based of polymer blend with optimum percent are of 0.2% of pomegranate Peels Powder (PPP), 0.3% of Seeds powder of dates Ajwa (SPDA) and 0.1% of TiO2 nano-powders that have ideal characteristic. Also for antibacterial tests, polymeric blend composites with optimum percent of this nano-powders show that more antibacterial efficiency against S.aureus bacteria than E.coli bacteria.

Effect of Accelerated Weathering on the Compressive Strength for PMMA Nano Composites and PMMA Hybrids Nano Composites Used in Dental Applications

S.I. Salih; J.K. Oleiwi; A.M. Talia

Engineering and Technology Journal, 2017, Volume 35, Issue 3, Pages 204-215

In the present research, efforts are made to develop the properties of PMMA resin that used for upper and lower prosthesis complete denture, by addition four different types of nanoparticles powders, which are fly ash, fly dust, zirconia and aluminum that added with different ratios of volume fractions of (0.01, 0.02 and 0.03) to poly methyl methacrylate (PMMA), cold cured resin (castavaria) is the new fluid resin (pour type) as a matrix. The nano composite and hybrid nano composite for prosthetic dentures specimens, preparation was done by using (Hand Lay-Up) method as six groups which includes: the first three groups consists of PMMA resin reinforced by fly ash , fly dust and ZrO2 nanoparticles respectively, the second three groups consists of three types of hybrid nano composites, which includes ((PMMA:X% fly ash) - (1%Al + 3%ZrO2)), ((PMMA:X% fly dust) - (1% Al + 3%ZrO2)) and ((PMMA:nZrO2) - (1% fly ash+ 3% fly dust)) respectively. As well as, the effect of moisture and UV was taking into consideration in this study. The compression test results shows that the values of compressive strength, compressive elastic modulus, and compressive strength under the effect of accelerated weathering (moisture and UV radiation) increased with the addition of nano powders (fly ash, fly dust, zirconia and aluminum). As well as, the results showed that the maximum values of compressive strength reach to (286.25MPa) for (PMMA + 2%nZrO2) nano composite. In addition, the results showed that the compressive elastic modulus reach to the maximum value (25.4166GPa) in the nano composite material (PMMA + 2%nZrO2). Moreover, the results showed that the compressive strength under the effect of accelerated weathering (moisture and UV radiation) reach to the maximum value to (315MPa) for the nano composite material (PMMA + 3%nZrO2).

Study the Effect of Nano Ceramic Particles on Some Physical Properties of Acrylic Resins

Q.A. Hamad

Engineering and Technology Journal, 2017, Volume 35, Issue 2, Pages 124-129

In the present research, study the effect of adding two different types of reinforcing particles, which included: nano-alumina (nano-Al2O3) and nano-silica (nano-SiO2), that added with different volume fractions of (1%, 2% and 3%), on some physical properties of composite prosthesis complete denture base materials by using self (cold) cure poly methyl methacrylate (PMMA) resin as new fluid resin matrix. In this research, the composite prosthetic dentures specimens consist of two groups were prepared by using (Hand Lay-Up) method according to the types of reinforced particles, which includes: the first group consists of PMMA resin reinforced by nano-alumina particles, and the second group consists of PMMA resin reinforced by nano-silica particles. The physical tests were performed on these specimens include (water absorption test and thermal behaviors test). The result of this study showed the values of (thermal conductivity and thermal diffusivity) properties increased with increasing the volume fraction of both (nano-Al2O3 and nano-SiO2) particles in PMMA complete denture base materials. While, the values of (water absorption and specific heat) properties decreased. In addition, the addition of (nano-Al2O3) particles has a noticeable effect on the all properties of composite material for prosthetic denture base specimens more than the (nano-SiO2) particles.

Study the Effect of adding Natural Rubber and Polymethyl Methacrylate to the Epoxy Resin on the Quantitative Analysis and its Mechanical Properties

S.E. Salih; W.M. Salih; M.A. Abdul hameed

Engineering and Technology Journal, 2017, Volume 35, Issue 2, Pages 163-171

From polymer blends can be obtained more useful properties compared with single polymer. In this work, polymer blend (Epoxy (EP): Natural Rubber (NR)) with different ratios of NR (0, 2, 3.5 and 5%wt) and ternary polymer blend with ratio of (Epoxy: 2%NR: 5% wt. PMMA) were prepared. The Mechanical properties were included (tensile, flexural, impact, compression) tests and analytical physical properties (FTIR, SEM) were investigated, and the results show that the elongation values, impact strength and fracture toughness for polymer blend system (Epoxy: NR) were increment with increase natural rubber ratio in the polymer blend system. Whereas fracture strength, young’s modulus, flexural strength, flexural modulus and maximum shear stress decreased. The highest values of impact strength and fracture toughness were (0.041KJ/m2) and (0.321 MPa √m) respectively for polymers blend (95% Epoxy: 5% NR). Ductile fracture in rubber modified epoxy may be produce from the elastomeric nature of rubber which is represents an energy dissipating center.

Investigation of Hardness and Flexural Properties of PMMA Nano Composites and PMMA Hybrids Nano Composites Reinforced by Different Nano Particles Materials used in Dental Applications

Sihama E. Salih; Jawad K. Oleiwi; Alaa Mohammed.T

Engineering and Technology Journal, 2016, Volume 34, Issue 15, Pages 2838-2853

Poly methyl methacrylate (PMMA), widely used as a prosthodontic denture base, the denture base materials should exhibit good mechanical properties and dimensional stability in moist environment. In the present research, efforts are made to develop the properties of PMMA resin that used for upper and lower prosthesis complete denture, by addition four different types of nanoparticles, which are fly ash, fly dust, zirconia and aluminum that added with different ratios of volume fractions of (1%, 2% and 3%) to poly methyl methacrylate (PMMA), cold cured resin (castavaria) is the new fluid resin (pour type) as a matrix. In this work, the Nano composite and hybrid Nano composite for prosthetic dentures specimens, preparation was done by using (Hand Lay-Up) method as six groups which includes: the first three groups consists of PMMA resin reinforced by fly ash , fly dust and ZrO2 nanoparticles respectively, the second three groups consists of three types of hybrid Nano composites, which includes ((PMMA: X% nF.A)+ (1%Al + 3% ZrO2)), ((PMMA: X% nD.A)+ (1%Al + 3% ZrO2)) and ((PMMA - X%nZrO2)+(1%F.A + 3%F.D)) respectively. The hardness and flexural tests results show that the values of the hardness, flexural strength, Maximum shear stress and flexural modules increased and with the addition of Nano powders (fly ash, fly dust, zirconia, and aluminum). And the results showed that the maximum values of hardness reach to (84.166) for ((PMMA: 3%nZrO2) + (1%F.A + 3%F.D)) hybrid Nano composite, whereas the maximum values of hardness for Nano composite reach to (83.333) for (PMMA: 3%nZrO2) Nano composite. Also, the results showed that the maximum values of flexural strength and Maximum shear stress reaches to (101MPa) and (2.4738MPa) respectively for (PMMA: 2%nF.D) Nano composite. Moreover, the results showed that the maximum values of flexural modules reaches to (13.95GPa) for ((PMMA: 3% nF.A) + (1%Al + 3%ZrO2)) hybrid Nano composite, whereas the maximum values of flexural modules for Nano composite reach to (12GPa) for (PMMA-3%nZrO2) Nano composite.

Effect of Water Absorption on the Compressive Strength for PMMA Nano Composites and PMMA Hybrids Nano Composites Reinforced by Different Nanoparticles Used in Dental Applications

Sihama E. Salih; Jawad K. Oleiwi; Alaa Mohammed.T

Engineering and Technology Journal, 2016, Volume 34, Issue 14, Pages 2654-2669

Poly methyl methacrylate (PMMA), are widely used as a prosthodontic denture base, the denture base materials should exhibit good mechanical properties and dimensional stability in moist environment. In the present research, efforts were made to develop the properties of PMMA resin that used for upper and lower prosthesis complete denture, by addition four different types of nanoparticles, which are fly ash, fly dust, zirconia and aluminum that added with different ratios of volume fractions of (1%, 2% and 3%) to poly methyl methacrylate (PMMA), cold cured resin (castavaria) is the new fluid resin (pour type) as a matrix. In this work, the Nano composite and hybrid Nano composite for prosthetic dentures specimens, preparation was done by using (Hand Lay-Up) method as six groups which includes: the first three groups consists of PMMA resin reinforced by fly ash , fly dust and ZrO2 nanoparticles respectively, the second three groups consists of three types of hybrid Nano composites, which includes ((PMMA:X% fly ash)+ (1%Al + 3% ZrO2 )), ((PMMA:X% fly dust)+ (1%Al + 3% ZrO2)) and ((PMMA:X%nZrO2)+(1%fly ash+3%fly dust)) respectively. As well as, the effect of water absorption was taking into consideration in this study. The compression test results show that the values of the compressive strength with and without the effect of water absorption increased with the addition of Nano powders (fly ash, fly dust, zirconia, and aluminum). Also, the results showed that the maximum values of compressive strength reach to 286.25MPa for (PMMA: 2%nZrO2) Nano composite. Whereas the maximum values of compressive strength for hybrid Nano composite reach to 270MPa for ((PMMA: 2%fly ash) + (1%Al + 3% ZrO2)) hybrid Nano composite. Moreover, the results showed that the maximum value of compressive strength under the effect of water absorption reach to 335MPa in the Nano composite material (PMMA+2% fly dust), whereas the maximum value of compressive strength under the effect of water absorption for hybrid Nano composite reach to 362MPa for ((PMMA: 2% fly dust) + (1%Al + 3% ZrO2)) hybrid Nano composite.

Aerosol assisted dielectric barrier discharge plasma jet for Silver PMMA nanocomposite thin films preparation

Hammad R. Humud; Lubna Abd Al Kareem; Abdulhadi Kadhim

Engineering and Technology Journal, 2015, Volume 33, Issue 7, Pages 1273-1282

Silver Poly (methyl methacrylate) PMMA nanocomposite thin films deposited on glass substrates by in-situ aerosol assisted plasma polymerization at atmospheric pressure and room temperature, from methyl methacrylate monomer in the presence of different concentrations of Ag nanoparticles (3%, 5%, 7%, and 9wt%). The average particles size for the silver nanoparticles was within 50nm. Metal polymer nanocomposite thin films were characterized by UV-VIS, XRD, and SEM the optical studies show that the energy band gap will be different according to the silver PMMA concentration. The XRD pattern indicates that the pure PMMA is amorphous where The XRD pattern of Ag nanoparticles in PMMA, all the refractions corresponded to the pure silver metal with cubic symmetry. SEM and the XRD reveal the presence of silver nanoparticle embedded into PMMA. It can be concluded that it can be prepared Ag PMMA nanocomposite thin films by aerosol assisted dielectric barrier discharge DBD plasma jet polymerization and control the optical energy band gap irregulars by controlling the experiment variables.

To Study the Silver Concentration Effect on the Optical and Electrical Properties of the Ag/PMMA Composites

Nahida G.Hamed; Maraw Rahem

Engineering and Technology Journal, 2014, Volume 32, Issue 1, Pages 72-85

The present work was carried out to investigate the silver concentration Effect (Ag %)othe optical and the electrical properties of the polymethyl methacrylate (PMMA). The samples were casted as films from the photopolymer (PMMA) stated above and the reason. The optical constant (α,k,n, εr, and εi)for the photopolymer (PMMA),and Ag/PMMA composites at different concentration were investigated. It was seen that there was nonlinear relationship between the optical constants and the concentration ratio, which was attributed to their incompatibility. These results were confirmed with optical micrographs. It was found that there was increasing of carrier concentration with Ag ratio which Ag/PMMA composites at different concentration. These prepared polymer systems were analyzes spectrophotometically. It was found that an increasing in the absorption spectra with increasing of the silver concentration in Ag/PMMA composites, which was attributed to the increasing in localized states. The results proved that its energy gap was for 13%Ag/PMMA (4.85eV), which was the lowest of all polymer system involved due to previous was caused decreasing in the mobility. The results showed that the best conductivity was at 9%Ag ratio, and the lowest receptivity.

A Study of Mechanical Properties of Polymethl Methacrylate Polymer Reinforced by Silica Particles (Sio2)

Jawad Kadhim Oleiwi; Farhad Mohammad O.Kushnaw; Israa Faisal qhaze

Engineering and Technology Journal, 2013, Volume 31, Issue 15, Pages 2925-2940

In this research the mechanical properties of PMMA polymer reinforced by
ceramic particles (silica) has been investigated. Many tests are performed on these
composites. The effects of the particles size and volume fraction on the mechanical
properties which include: ultimate tensile strength, elongation percentage, modulus
of elasticity, bending modulus, flexural strength, max. shear stress, impact strength
and fracture toughness were studied.
Statistical and mathematical analyses were used to the processing of the
experimental data. Mathematical models were done which show the mechanical
properties of composite materials as a function of particles size and volume
fraction.
The results had revealed that the values of modulus of elasticity, elongation
percentage, tensile strength, bending modulus and max. shear stress increase with
the addition of SiO2 particles and with the increase of the volume fraction of them
and its reach the maximum value at (12% vol.) and (25 mm) particles size. The
values of fracture toughness and impact energy decrease with increase of volume
fraction. Silica particles with small particles size improved these properties more
than that of large particles size.

A Study of Some Mechanical, Thermal and Physical Properties of Polymer Blend with Iraqi Kaolin Filler

Najat J. Saleh; Samir Nassaf Mustafa

Engineering and Technology Journal, 2011, Volume 29, Issue 11, Pages 2114-2131

In the present work, polymer blends were fabricated by mixing two polymers
of polypropylene and poly (methyl methacrylate) mixed in different weight
percentage and different particle size of Iraqi kaolin. The study of some
mechanical, physical and thermal conductivity properties was carried out on all
composites. The mechanical tests included (impact, hardness, modulus of
elasticity, yield strength, elongation, stress at break and compression), Lee's disc
method was used to calculate the coefficient of the thermal conductivity of
specimens before and after reinforcement with kaolin powder. The physical
properties test included absorption tests, as well as X-ray measurement. The
results have shown that after the reinforcement with different weight percent of
kaolin powder, most mechanical properties such as hardness , modulus of
elasticity and compression increase while impact and elongation decrease with
increasing in weight percentage and a decreasing in particle size. The results have
shown also that the coefficient of thermal conductivity decreases with increase
weight percentage the water gain is decreased with the increase in weight percent
and decrease in particle size of the filler. X-ray diffraction pattern of filled
samples indicates that addition of kaolin adversely affects the crystallization of
PP/PMMA blend.

Study of the Optical Constants of the PMMA/PC Blends

Marwa. R. F; Nahida. J. H

Engineering and Technology Journal, 2011, Volume 29, Issue 4, Pages 698-708

The aim of the present work is concerned with the study of the optical
constants of the PMMA/PC blend at different concentrations.
The samples are casted as films from the PMMA and PC homopolymers and
blend. These polymer systems are evaluated spectrophotometically. The
absorption spectra of homopolymers and PMMA/PC blends at different
concertation showed absorption changes in the wavelength range, which depends
on the polymer type, and the concentration of the polymer blends. It was found
that 50% ratio from these polymers showed higher absorption values in
comparison with the homopolymers, besides, the absorption spectroscopy of the
polymer blends did not always effect the similar information obtained from the
spectroscopy of the homopolymers .A phenomenon was attributed to immiscibility
or phase separation as associated with the blends formation. The results of the
optical constant proved that 50%ratio was the best, which was attributed to the
lowest energy gap (2.5 eV). Morphological investigations for the
casted polymer systems were introduced.