Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Performance


Humidification Effect on the Performance and Emissions of (DI) Diesel Engine Running on Diesel Fuel with Biodiesel Blended Nano Additives

Hussein Jumaa; Mahmoud A. Mashkour

Engineering and Technology Journal, 2021, Volume 39, Issue 5A, Pages 790-803
DOI: 10.30684/etj.v39i5A.1935

The effect of humidification of the air on the performance of a compression ignition engine operating on diesel, biodiesel with nano additives was investigated. The experiment was carried out on a single-cylinder, four-stroke, naturally aspirated water-cooled, direct injection Ricardo (E6/US) diesel engine at a constant speed of 1800 rpm, and varying loads. A mixture of Biodiesel (waste cooking oil) and diesel fuel by four ratios (B5, B10, B15, and B20) was used in the experiment. Besides, five concentrations of Iron oxide nanoparticles (Fe2O3, with particle size 20 nm) as fuel-additives were prepared (10 ppm, 30 ppm, 50 ppm, 70 ppm, and 100 ppm), and added to the test fuels (Bio-Diesel).  Taguchi Method by DOE was used for the optimization in this investigation. The results of Taguchi Method experiments identified the biodiesel (B20), nano additive (100 ppm), relative humidity (65%). The experimental results manifested that BTE improved by 17.62% and BSFC decreased by 12.72%, while NOx and PM reduced by 8.45%, 24.17%, respectively.

Experimental Study on Performance and Emission Characteristic of Diesel Engine using Sunflower oil Biodiesel Blends

Ghassan S . Ali; Abed AL-Kadim Hassan

Engineering and Technology Journal, 2020, Volume 38, Issue 8, Pages 1169-1177
DOI: 10.30684/etj.v38i8A.385

Biodiesel fuel is a liquid biofuel produced by chemical process form new and used phytogenic oils, animal fats. Biodiesel fuels can be utilization alone or mixing with the pure diesel at different proportion. In the present work a diesel engine type (FIAT) , four cylinder, variable speed, direct injection was operated by sunflower oil methyl ester , biodiesel at different blend ratio . five different ratio of biodiesel blends 10%, 20%, 30%, 40%, and 50% by volume is used in this study and compared with using of pure diesel at variable loads and variable engine speed. The effect of biodiesel additive to pure diesel on the performance and emission characteristics. Adjust the engine speed at 1100 rpm by means of the engine tachometer and digital tachometer, and reduce the load gradually until the engine speed increased to 1900 rpm automatically by increments of 200 rpm. The BSFC for B20 It seems less than the other ratio of biodiesel blends, and the BTE of biodiesel blends is lower than the pure diesel but the B20 having high BTE in comparison with the other biodiesel- diesel mixtures. the UHC and CO emission for B20 is less than the biodiesel blends and pure diesel, but the NOX emission for B20 is lower than the other biodiesel blends and higher than pure diesel. The present work shows the B20 relatively is a better performance and combustion characteristic than that biodiesel blends ratio

Experimental Investigation of the Influence of Adding Alumina to Diesel Fuel on the Engine Performance and Emission Characteristics

Sadiq T. Bunyan; Abed AL-Khadim M. Hassan

Engineering and Technology Journal, 2020, Volume 38, Issue 4A, Pages 523-529
DOI: 10.30684/etj.v38i4A.498

The present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles to diesel fuel on the characteristic of the emissions and engine performance. The size of nanoparticles which have been added to diesel fuel to obtain nano-fuel is 20 nm. Three doses of Aluminum oxide were prepared (25, 50 and 100) ppm. The nanoparticles mixed with fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) to gas oil (Al2O3+DF) enhances the physical properties of fuel. Also, the adding of (Al2O3) reduce CO emissions by 20.5%, decrease NOx emission by 12.2%, increasing CO2 emissions by about 2.27% and decrease UHC emission about 13.5%. Furthermore, reduces the brake specific fuel consumption by 14.3%, decreasing the equivalence ratio by14.87% and improving the brake thermal efficiency by about 10.89%.