Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : density

Effect of Adding Polypropylene Fibers in Met kaolin-Based Geopolymer Concrete

Qais J. Frieh; Mushtaq H. Kamil

Engineering and Technology Journal, 2021, Volume 39, Issue 12, Pages 1814-1820
DOI: 10.30684/etj.v39i12.2224

Geopolymer is a binder material that was created as a result of efforts to decrease Portland cement's negative environmental effects.  Geopolymer concrete shares certain properties with ordinary concrete, including brittleness. Like ordinary concrete, geopolymer concrete, when exposed to stresses, cracks and fails under these stresses. The purpose of adding fibers to geopolymer concrete is to overcome the matrix's brittleness and enhance its strength (particularly flexural strength). This study used metakaolin, a range of alkaline activators, and different quantities of polypropylene fibers to produce geopolymer concrete. Metakaolin's chemical composition, workability, density, flexural and compressive strength of geopolymer concrete were all examined for the purpose of determining the effect of polypropylene fibers on geopolymer concrete. Polypropylene fibers were used to make the mixes, which were then added to the mix at various percentages of 0 %, 0.5 %, and 1 % of the total volume of concrete. The results of the experiments showed that increasing the polypropylene fiber content to 0.5 % boosts the compressive strength of geopolymer concrete. On the seventh day, the compressive strength increased to 21 %. The density of geopolymer concrete was increased by adding polypropylene fibers, and there was a decrease in the workability with different fiber ratios.

Study Compression, Hardness and Density properties of PMMA Reinforced by Natural Powder Used in Denture Base applications

Jawad Oleiwi; Q. A. Hamad; N. N. Kadhim

Engineering and Technology Journal, 2019, Volume 37, Issue 12A, Pages 522-527
DOI: 10.30684/etj.37.12A.5

 This research had been done to investigate the effect of adding natural powder of Pistachio Shell to PMMA, which popularly used in denture applications. The powder added in different weights fraction (3%, 6%, 9%, and 12%), and different average particle size (53µm, 106 µm, 150 µm, and 212µm %), and studying Compression Strength, Surface Hardness, and Density properties. Hand Lay-Up represented the method used to prepare the specimens in this research. The results were statistically analyzed by SPSS (one-way ANOVA) to determine the mean value and showed a significant difference for each particle size. The highest value of compression strength and surface hardness of PMMA composite specimens happened at (9%wt.) of the filler particles. Also the results represented that the density values for the composite specimens are increased with increasing the weight fraction of the filler particles.