Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Dynamic Behavior of Gypseous Soil


Assessing the Dynamic Behavior of Asphalt Stabilized Gypseous Soil

Mahmood D. Ahmed

Engineering and Technology Journal, 2014, Volume 32, Issue 4, Pages 822-841

The study presents the test results of stabilizing gypseous soil embankment obtained from Al- Faluja University Campus at Al-Ramady province. The laboratory investigation was divided into three phases, the physical and chemical properties; the optimum liquid asphalt (emulsion) requirements (which are manufactured in Iraq) were determined by using one dimensional unconfined compression strength test. In the first phase , the optimum fluid content was 11% (6% of emulsion with 5% water content). At phase two, the effect of aeration technique was investigated using both direct shear and permeability test. At phase three, a laboratory soil model of dimensions 50x50x30 cm was used as a representative of gypseous soil; pure soil, and asphalt stabilized soil have been compacted in five layers after practicing an aeration technique at maximum dry density (modified compaction) cyclic loading test was carried out on four gypseous soil models, two of them were pure soil under (dry and absorbed condition), and the other two were stabilized with emulsion also under (dry and absorbed condition). The impact of charging the hydraulic conductivity due to asphalt stabilization was investigated and the vertical deformations were determined using LVDT.
For the pure soil in dry condition the vertical settlement at the top surface was (7.45 mm) at (157 load cycles), while for pure soil model under absorbed condition, the water was raised to the surface in three days , so the vertical settlement at the top surface was (12.5 mm) at (29 load cycles), this means that the pure gypseous soil under absorbed condition show reduction in strength by(85%).
When the stabilized soil is in dry condition, the vertical settlement at the top surface was (9.75 mm) at (911 load cycles), while the soil was stabilized and subjected to water absorbed for seven days. The water stopped rising at second layer which is the same inlets level from the bottom, and the vertical settlement was (10.47 mm) at (897 load cycles), so there is no change in strength at failure.