Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : wear rate

Evaluation of the Microstructure and Mechanical Properties of Al / Fe3O4 Nanocomposites

Suaad M. Jiaad; Khansaa Salman; Ahmed A. Hussein

Engineering and Technology Journal, 2021, Volume 39, Issue 11, Pages 1632-1638
DOI: 10.30684/etj.v39i11.2080

The goal of this research is to study the microstructural analysis and mechanical properties of an aluminum matrix reinforced with different amounts of nano Fe3O4 at (2, 4, 6, 8, and 10wt. %). Al/ Fe3O4 nanocomposites specimens were prepared using the powder metallurgy route. Many examinations, including Field Emission Scanning Electron Microscopy (FESEM) and X-Ray Diffraction (XRD) analysis, were performed on the specimens in this study to determine the microstructure and phases of the nanocomposites. Mechanical tests, such as compressive, microhardness, and wear tests, were also performed to assess the mechanical properties of the nanocomposites. The results of this study show that Fe3O4 nanoparticles have been homogeneously dispersed in the Al matrix by FESEM and XRD examination. While the mechanical tests show improving the compressive strength at 6 wt.% by 5.36%, the highest microhardness was at 10% by 101.6% compared with the pure Al, and improving the wear rate.

Impact Strength, Flexural Modulus and Wear Rate of PMMA Composites Reinforced by Eggshell Powders

Aseel M. Abdullah; Hussein A. Jaber; Hanaa A. Al-Kaisy

Engineering and Technology Journal, 2020, Volume 38, Issue 7, Pages 960-966
DOI: 10.30684/etj.v38i7A.384

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.

Development of Surface Roughness and Mechanical Properties of PMMA Nanocomposites by Blending with Polymeric Materials

Hussein M. Sadeq; Sihama I. Salih; Auda J. Braihi

Engineering and Technology Journal, 2019, Volume 37, Issue 12A, Pages 558-565
DOI: 10.30684/etj.37.12A.10

This work aims to a development of mechanical properties of PMMA that is utilized in denture material, by using two types of polymers; blends (PMMA:2%NR) and (PMMA:2%SR) as a matrix materials strengthen with natural nanoparticles from the pomegranate peel powder (PPP) that were added at different weight fractions (0.0, 0.1%, 0.3%, 0.5% and 0.7%). Two groups of bio nanocomposites specimens were prepared, using (Hand Lay-Up) method. Experimental tests were carried out on surface roughness, hardness and wear rate as well as analyzing of FTIR test. The minimum values of surface roughness and wear rate were reached 1.51 nm and 0.317×10-8 g/cm respectively for polymer blend nanocomposite ((PMMA:2%NR): 0.7% PPP). Whereas, the maximum value of Shore D hardness reached 90 for the same sample of nanocomposites. According to these results, it can be a concluded that the addition of Nano pomegranate powder and natural rubber can develop the mechanical properties of PMMA material used in medical applications.

Investigation the Effect of Nano–Particles and Recycling Mortar Additives on Physical and Mechanical Properties of Concrete

Alaa A. Abdul-Hamead; Farhad M. Othman; Raeid K. Mohammed

Engineering and Technology Journal, 2018, Volume 36, Issue 3A, Pages 295-303
DOI: 10.30684/etj.36.3A.8

In this paper a lower ratio of nano powder were used from (Al2O3 and ZrO2) (0.5, 1.5and 2. 5 wt %) from cement weight, the average particle size of nano-powder were (20nm). These powders were used in fabrication of Concrete with recycle fine aggregate was replaced Natural fine aggregate(sand) in order to be used in construction application and studies the effect on the concrete. Investigation were done on the concrete including dry density, water absorption%, porosity%, compression strength, and wear rate. The results shows that The nano-Al2O3, nano-ZrO2, and recycle aggregate were adding causes difference effect in the physical and mechanical properties of concrete. Compared with control concrete specimens (Co) results for same curing time, the density, and compression strength of concrete were decreased with addition recycle fine aggregate(RFA), while wear rate, water absorption, and porosity % were increased, the lower values of density, compression strength were decreased by (2.3%, 10.8% ), respectively, while the higher values wear rat for 7 and 28 day curing time, water absorption and porosity % were increased by (19.8%, 21.4%, 8.8%, and 5.6%), respectively were obtained with addition (50%)RFA. While, the addition nano-Al2O3 and ZrO2 with RFA were increasing the density, and compression strength, but decreasing wear rate, water absorption, and porosity %, the higher values of compression strength was increased by (9.8%), while the lower values water absorption and porosity % were decreased by (24.1%, and 16.6% ), respectively were obtained with addition (1.5%) of nano-Al2O3 and 50% RFA. But the higher values of density was increased by (9.8% ) and lower values of wear rate for 7 and 28 day curing time were decreased by (71.1%, and 66.9%), respectively was obtained with addition (1.5%) of nano-ZrO2 and 50% RFA.

Characterization of Nano Powder Incorporated for Building Applications

Alaa A. Abdul-Hamead; Farhad M. Othman; Mustafa M .Salih

Engineering and Technology Journal, 2015, Volume 33, Issue 6, Pages 1027-1039

In this paper Nano powders were used a mono; copper oxide CuO and di metal oxides powder; titanium dioxide (TiO2) in fabrication of mortar. Powder particle size about (67.8 nm) for TiO2 and (55.7nm) for CuO with crystal structure tetragonal and monoclinic system respectively have been used. These Nano powders were used as additives to the mortar material (0.5, 2.5, 5, 7.5 wt %) in order to be used in construction application including covering building, and studies on these mortar. Investigation was done on the mortar including XRD, AFM, optical microscopy, physical and some mechanical properties, micro hardness and wear rate). Results shows that where there an increase in micro hardness and decrease in wear rate in the mortar with the addition of Nano powder. Also be reduced Ca(OH)2 soft crystals and formation fine grains structure and homogeneous and the abolition of flaws or cracks. And the mortar with the Nano addition has been improved, which make the addition of Nano material beneficial and have a promising future in modern construction application.

Effect of Thermally Sprayed Ceramic Coating on Properties of Low Alloy Steel

Fadhil A. Chyad; Abdalkalaq F. Hamood; Lamees S. Faiq

Engineering and Technology Journal, 2014, Volume 32, Issue 10, Pages 2568-2575

Thermal spraying technique was employed for coating low alloy steel specimens that have been used in a derrick oil well frames.
Two types of ceramic materials were used as a coating material and two groups of steel samples were prepared for coating process.
The first group was coated by zirconia while the second group was coated by alumina. Ni-Al composite powder was used forbonding the coating material on the substrate surface of the steel specimens.
The hardness, adhesion strength of the coating layers as well as wear rateswere studied for the two steel group samples and compared with as received steel.
The results showed an increase in the mechanical properties with a decrease in wear rate values for coated samples as compared to those of uncoated samples.

Wear Resistance of a New Glass Ceramic Coating

Jabbar H. mohmmed; Ibtihal A. Mahmood; Ali H. Ataiwi

Engineering and Technology Journal, 2014, Volume 32, Issue 6, Pages 1472-1484

A new wear resistance glass-ceramic coating system iron (low alloyed low carbon steel) based substrate was developed. The effects of heat treatment conditions and mill additions on wear resistance of developed coatings resistance were studied. The coating materials showed excellent properties for protection the iron substrate from wear. Also, in this work mathematical modeling is implemented and regression equations are obtained by using ( SPSS ) software to predict the experimental data for wear rate. Comparing the predicted and measured values gives high prediction accuracy.

Studying of Wear Rate for Ternary Polymer Blends under the Influence of Chemical Solutions

Ban Ayyoub Yousif; Balkees M. Dhyaa

Engineering and Technology Journal, 2013, Volume 31, Issue 7, Pages 809-819

This work has been done with use of Epoxy and Novolac resins mixed with either polyurethane (PUR) or polysulphide(PSR) rubbers to compose ternary polymer blends. Two groups of samples are prepared:
1. Blend A (70% Epoxy +15%Novolac+15%PUR).
2. Blend B (60% Epoxy +20% Novolac +20% PSR).
These blends were tested by wear instrument, This test is carried out on samples under the influence of normal conditions (room temperature) and after immersion of blend samples in chemical solutions (H2O, H2SO4 and KOH) for (15, 30 and 45) days. The normality for these chemical solutions is (0.2N). After immersion the blend samples in chemical solution, their wear resistance decreased. The properties of blend that contains polyurthane rubber were affected more. The test results are affected by all the chemical solutions, but the alkaline solution KOH is the most effective solution. For wear test, results show that wear rate increases with increasing applied load, and increases or decreases with sliding velocity (depending on if it is high or low respectively).

Mechanical and Tribological Behavior of Glass- Polyester Composite System under Graphite Filler Content

Farag M. Mohammed; Drai A. Smait

Engineering and Technology Journal, 2012, Volume 30, Issue 4, Pages 672-683

Experimental investigations had been done in this work to demonstrate the effect of
graphite filler contents on the mechanical and tribological behavior of (30% volume
fraction) glass-polyester composite system. The stress-strain relations, modulus of
elasticity, yield stress, ultimate tensile strength and ultimate compression strength were
studied according to ASTM-D 638-87and ASTM-D 695 to present the composite
mechanical behavior. The wear rate and wear resistance were investigated according to
ASTM-D 5963 using pin on disc machine to present the composite tribological behavior.
The results showed that the mechanical and tribological properties behavior was
improved when the graphite filler content was increased up to 7.5% and then decreased
after that. At 7.5% filler content the modulus of elasticity, yield stress, ultimate tensile
strength, ultimate compression strength and wear resistance increased by (41%, 64%,
24%, 60% and 38%) greater than unfilled composite, while the wear rate was decreased
by 27% less than the unfilled one.

Study of The Wear Rate of Some Polymer Materials In Different Conditions

Awham M. H; Sadeer M. M; Bushra H. M

Engineering and Technology Journal, 2010, Volume 28, Issue 16, Pages 5165-5170

The current investigation is interested by study of the wear phenomenon for two polymeric materials (Epoxy and Unsaturated polyester) resins, the prepared specimens were tested at room temperature by using two different loads(10,20)N for various testing times with different sliding distances. The resulted wear rates were calculated for each sample apart with. Variation the previous variables. To produce more precise idea about the wear characteristics of both above materials when immersed them in water environment, the study of wear rates was carried out for different immersion times at different temperatures when the above mentioned variables were fixed. It was found after comparing the results which obtained from the wear test in air that
Epoxy resin undergoes higher wear rates than unsaturated polyester resin in general with variation the testing parameters, while the results of immersion in water which acts as plasticizing factor for polymers exhibited different effect on the wear behavior of the materials under study.

Mechanical Properties of The Modified Al-12%Si Alloy Reinforced by Ceramic Particles

Haitham Razouqi Saleh

Engineering and Technology Journal, 2010, Volume 28, Issue 2, Pages 289-300

The aluminum alloys are important in many industrial applications
because of their light weight and good mechanical properties. For this reason
many researches had been done to enhance their properties. In this work a
modifier was applied to Al-12%Si alloys by adding different percentage of
Antimony powder (0.1, 0.2, 0.3, 0.4 and 0.5 Wt %). The mechanical properties of
the modified alloys were considered. The optimum properties were found by
adding 0.3% Antimony powder. This alloy was used as the matrix for the
production of composite material (aluminum matrix reinforced by ceramic
particles (Y2O3) with different weight percent (3,6,9 and 12%Wt)) using vortex
technique. The casting parameters were 3 minute as a mixing time and 300 r.p.m
as a mixing speed. The microstructure, hardness and wear test were applied on the
modified alloy and composite materials. The effect of the addition of Antimony
and reinforcement particles on the microstructure, hardness and wear rate of the
composite material were considered. The results show that the addition of
Antimony leads to the microstructure refinement and change the silicon shape in
the alloy from the flake – like or lamellar – like to fibrous – like In addition to the
increasing the hardness when Sb is up to 0.3%, after that the hardness will
decrease, as well as the addition of ceramic particles increase the hardness and
d e c r e a se the wear rate.