Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Shear Strength

Size Effect on The Shear Strength of Reinforced Concrete Beams

Hind T. Jaber; Kaiss F. Sarsam; Bassman R. Muhammad

Engineering and Technology Journal, 2021, Volume 39, Issue 12, Pages 1960-1976
DOI: 10.30684/etj.v39i12.2283

According to research, as the depth of a beam increases, the section's shear strength can be expected to decrease. The size effect is a phrase that has been used to describe this tendency. Testing of unreinforced specimens under shear has also shown that the shear strength might be lower than what is typically anticipated in the design. As a result, it is critical to comprehend the behavior of these structures, as they may be influenced by a size impact. Sixteen reinforced concrete beams of different rectangular cross-sections without stirrups were tested. The tested beams were simply supported made of high-strength reinforced concrete subjected to two equal concentrated loads up to the failure. The experimental results showed that all of the beam specimens failed in shear except one which had failed by flexure. Moreover, increasing beam height from 150 to 250 mm has decreased the cracking and ultimate shear strength ratio for all groups except for group four when the beam height increased from 150 to 300 mm the cracking and ultimate shear strength ratio has increased. Furthermore, increasing beam depth from 150mm to 300mm has led to increasing the ultimate load besides decreasing their final deflection at the same level of load, which is the apparent size effect in the stiffness of the tested beams.

Behavior of Cohesive Soil Reinforced by Polypropylene Fiber

Mohammed A. Al-Neami; Falah Hasan Raheel; Yassein H. Al-Ani

Engineering and Technology Journal, 2020, Volume 38, Issue 6, Pages 801-812
DOI: 10.30684/etj.v38i6A.109

For any land-based structure, the foundation is very important and has to be strong to support the entire structure. In order for the foundation to be strong, the soil underneath it plays a very critical role. Some projects where the soil compacted by modifying energy is insufficient to achieve the required results, so the additives as a kind of installation and reinforcement are used to achieve the required improvement. This study introduces an attempt to improve cohesive soil by using Polypropylene Fiber instead of conventional kinds used in soil stabilization. Three different percentages (0.25%, 0.5%, and 0.75% by dry weight of soil) and lengths (6, 12, and 18) mm of fiber are mixed with cohesive as a trial to enhance some properties of clay. The results of soil samples prepared at a dry density at three different water conditions (optimum water content, dry side, and wet side) showed that the increase of the percentage and length of polypropylene fiber causes a reduction in the maximum dry density of soils. Soil cohesion increases with the increase of PPF up to 0.5% then decreased. The length of Polypropylene fiber has a great effect on the cohesion of soil and adding 0.5% Polypropylene fibers with a length of 18mm to the soils consider the optimum mix for design purposes to improve the soil. Finally, the soil reinforced by PPF exhibits a reduction in the values of the compression ratio (CR) and accelerates the consolidation of the soil.

Shear Strength of Concrete Deep Beam Subjected to Uniformly Distributed Load

Eyad K. Sayhood; Ali S. Resheq; Ayad J. Habeeb

Engineering and Technology Journal, 2018, Volume 36, Issue 2A, Pages 125-135
DOI: 10.30684/etj.36.2A.3

In this paper, result of tests on 20 simply supported concrete deep beams are presented. All tested beams have dimensions of (150 x 400 x 1100) mm and tested under (1, 2, 4 and 8) point loads. The considered parameters are shear span to effective depth ratio (a/d), concrete compressive strength (fʹc) and longitudinal reinforcement ratio (ρw).The influence of these parameters on cracking and ultimate load, load versus deflection response and concrete strain are investigated.
The results showed that the decrease in the (a/d) ratio from 1.373 to 0.412 leads to a decrease in cracking and ultimate shear strengths by average ratios of 40 % and 57 % respectively, while increasing (fʹc) and (ρw) leads to the increase in the cracking and ultimate shear strengths. The load-deflection response is significantly affected by the (a/d) ratio and becomes appreciably nonlinear as the (a/d) ratio increases, while it is slightly affected by the compressive strength of concrete (fʹc) and steel ratio (ρw). Strain distribution through the depth at mid span is nonlinear even in elastic stage. At the same load level, strain distribution increases as (a/d) increases and decreases as (fʹc) and (ρw) increase. The analytical work has been made on the 20 deep beams plus 62 from literature using the regression analysis. Proposed equation was compared with four equations available in literature and gave less average and coefficient of variation equal to1.04 and 16.98% respectively.

Behavior of Tapered Self-Compacting Reinforced Concrete Beams Strengthened by CFRP

T.S. al-Attar; S.S. Abdulqader; S.K. Ibrahim

Engineering and Technology Journal, 2017, Volume 35, Issue 3, Pages 197-203
DOI: 10.30684/etj.35.3A.3

This study presents an experimental investigation on the behavior of fourteen reinforced self-compacting concrete tapered beams with or without strengthening. The strengthening was applied by using carbon fiber reinforced polymer (CFRP) to beams with simply supported span and subjected to two points loading. Those beams have an overall length of 2000 mm, a width of 150 mm and a height of 250 mm at supports (hs) and a mid-span depth (hm) varies between 150 mm and 200 mm and with different strengthening scheme, they are investigated to evaluate the behavior at experimental test and to study the effect of the parameters which include haunch angle α, shear-span to effective depth ratio a/d and strengthening strips number and locations on beams behavior. The experimental results show that decreasing the value of haunch angle α increased the load capacity by about 56% and decreased the corresponding deflection while when tapered beams are strengthened by CFRP the ultimate load is increased up to 39% with decrease of deflection. On the other hand, increasing a/d ratio leads to a decrement in load capacity and increment in deflection.

Effect of Shear Span-Depth Ratio on Shear Strength of Porcelanite Lightweight Aggregate Reinforced Concrete Deep Beams Strengthened by Externally Bonded CFRP Strips

K.F. Sarsam; N.A.M. Al-Bayati; A.S. Mohammed

Engineering and Technology Journal, 2017, Volume 35, Issue 3, Pages 267-275
DOI: 10.30684/etj.35.3A.12

This paper presents an experimental investigation of structural behaviour of reinforced concrete deep beams strengthened in shear by CFRP strips. The experimental program consisted of fabricating, casting and testing of nine identical porcelainte lightweight aggregate reinforced concrete deep beams. Three of the tested deep beams were unstrenghtened to serve as reference beams, while the remaining beams were tested after being strengthened using CFRP strips in two different orientations (vertical and horizontal). The locally available natural porcelanite aggregate is used to produce lightweight aggregate concrete. The beams were designed to satisfy the requirements of ACI 318M- 14 building code. In order to insure shear failure modes, adequate flexural steel reinforcement were provided. Effect of three different values of shear span to effective depth ratio (a/d =1.0, 0.8, 1.2) were selected. All beams have been tested as a simply supported beams subjected to two concentrated points loading. The beam specimens were tested up to failure under monotonic loads. The experimental work showed that the failure load increases as the shear span to effective depth ratio deceases. As the shear span to effective depth ratio decreased from 1.0 to 0.8, the percentage of increase in the ultimate load was about 24%. In addition, the diagonal compression strut crack of unstrenghtened control beams was changed to several diagonal cracks at mid depth within the shear span of the strengthened beams and exhibited more ductile failure mode.

An Experimental Study on the Shear Strength of High-performance Reinforced Concrete Deep Beams without Stirrups

Sinan Abdulhkaleq Yaseen

Engineering and Technology Journal, 2016, Volume 34, Issue 11, Pages 2123-2139
DOI: 10.30684/etj.34.11A.17

High-performance fiber-reinforced concrete is a new class of concrete that has been developed in recent decades. It exhibits enhanced properties such as high compressive strength and improved tensile strength. Three types of concrete with different compressive strengths, namely, normal-strength concrete, high-strength concrete, and high-performance concrete, were used in this study. The experimental program included casting and testing sixteen reinforced concrete deep beams without stirrups to study the shear strength and behavior of these beams under two-point loading. The variables considered were the compressive strength of concrete (f′c ) (40–120 MPa), shear span-to-depth ratio (1, 1.5, 2, 2.5, and 3), and the ratio of the amount of flexural steel bar ratio (1.35%, 2.40%, 3.76%, and 6.108%). Experimental results showed that increasing concrete compressive strength and flexural steel bar ratio increased ultimate shear capacity. By contrast, increasing shear span-to-depth ratio and span-to-depth ratio reduced ultimate shear capacity. Based on the test results of this investigation (16 beams) and those of available literature (233 deep beams), an equation that considered the parameters affecting shear stress (f′c, l/d, a/d, andw) was proposed using SPSS software. The proposed equation was compared with predictions made by the American Concrete Institute (ACI) and the works of other researchers, including that of Zsutty and Aziz. The ACI predictions were conservative and the proposed equation had a lower coefficient of variation.

Experimental Study on Compressibility, Volume Changes, Strength and Permeability Characteristics of Unsaturated Bentonite-Sand Mixtures

Mohammed Y. Fattah; Nahla M. Salim; Entesar J. Irshayyid

Engineering and Technology Journal, 2016, Volume 34, Issue 7, Pages 1308-1323
DOI: 10.30684/etj.34.7A.5

Expansive soils are generally found in arid and semiarid regions. These soils undergo volumetric changes upon wetting and drying, thereby causing ground heave and settlement problems. This characteristic causes considerable construction defects if not adequately taken care of. Solving the unsaturated soil problems needs the assessment of suction variation in time and space as a response to the variation of environmental factors such as rainfall and evaporation.
To investigate the effect of the changes of the soil suction on the volume changes, expansion index, swelling pressure, shear strength and the coefficient of permeability, small scale experiments were conducted using pure bentonite and the bentonite mixed with sand in proportion of: 30%, 40% and 50% at different initial water contents and dry unit weights was chosen from the compaction curves. The study shows that the swelling-potential, swelling-pressure, the soil-suction, the soil-strength and the coefficient of permeability are affected by the initial-conditions (water-content and dry-unit weight), where all these parameters except the permeability-coefficient marginally decrease with the increase in soil-water content, while the coefficient-of permeability increases with increasing the water-content.

Study Shear Strength Characteristics of Gypseous Sandy Soil Using Additives

Hussein H. Karim; T. Schanz; Maha H. Nasif

Engineering and Technology Journal, 2013, Volume 31, Issue 8, Pages 1431-1446
DOI: 10.30684/etj.31.8A1

The present study investigated the possibility of enhancing collapsible gypseous soil of Al-Qarma site (with relatively high gypsum content around 50%), which is located in Al-Anbar Governorate, using kaolinite and bentonite as additives. The essential idea is concentrated in mixing these additives with natural soil using different percentages (5, 10, 15 and 20% by soil dry weight) to investigate soil shear strength enhancement. The effect of such additives on soil shear strength parameters, cohesion (C) and angle of internal friction (Φ), and their behavior were studied using direct shear test. The results showed that shear strength parameters of soil sometimes increased and then decreased with increasing additives. Generally, higher shear strength parameters have been obtained from bentonite mixed soil than that of kaolinite mixed soil for the same percentages of additives. It was concluded that bentonite was much more effective in increasing C and reducing Φ than kaolinite. While, kaolinite was much more effective in reducing C than bentonite. It was also concluded that gypseous soil shear strength is improved using such additives (with only 5% kaolinite or with only 20% bentonite) which provide cohesion strength to the soil mass and also acts as a binder agent material.