Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Trajectory Tracking


Design of a Nonlinear Fractional Order PID Neural Controller for Mobile Robot based on Particle Swarm Optimization

Ahmed Sabah Al-Araji; Luay Thamir Rasheed

Engineering and Technology Journal, 2016, Volume 34, Issue 12, Pages 2318-2333

The goal of this paper is to design a proposed non-linear fractional order proportional-integral-derivativeneural (NFOPIDN) controller by modifying and improving the performance of fractional order PID (FOPID) controller through employing the theory of neural network with optimization techniquesfor the differential wheeled mobile robotmulti-input multi-output (MIMO) systemin order to follow a desired trajectory. The simplicity and the ability of fast tuning are important features of the particle swarm optimization algorithm (PSO) attracted us to use it to find and tune the proposed non-linear fractional order proportional-integral-derivative neural controller’s parameters and then find the best velocity control signals for the wheeled mobile robot. The simulation results show that the proposed controller can give excellent performance in terms of compared with other works (minimized mean square error equal to 0.131 for Eight-shaped trajectory and equal to 0.619 for Lissajous- curve trajectory as well as minimum number of memory units needed for the structure of the proposed NFOPIDN controller (M=2 for Eight-shaped trajectory and M=4 for Lissajous- curve trajectory) with smoothness of linear velocity signals obtained between (0 to 0.5) m/sec.

A Cognitive PID Neural Controller Design for Mobile Robot Based on Slice Genetic Algorithm

Ahmed Sabah Al-Araji

Engineering and Technology Journal, 2015, Volume 33, Issue 1, Pages 208-222

The main core of this paper is to design a trajectory tracking control algorithm for mobile robot using a cognitive PID neural controller based slice genetic optimization in order to follow a pre-defined a continuous path. Slice Genetic Optimization Algorithm (SGOA) is used to tune the cognitive PID neural controller's parameters in order to find best velocities control actions of the right wheel and left wheel for the mobile robot. Pollywog wavelet activation function is used in the structure of the cognitive PID neural controller. Simulation results and experimental work show the effectiveness of the proposed cognitive PID neural tuning control algorithm; This is demonstrated by the minimized tracking error and the smoothness of the velocity control signal obtained, especially with regards to the external disturbance attenuation problem.

Design of a Nonlinear PID Neural Trajectory Tracking Controller for Mobile Robot based on Optimization Algorithm

Khulood E. Dagher; Ahmed Al-Araji

Engineering and Technology Journal, 2014, Volume 32, Issue 4, Pages 973-985

This paper presents a trajectory tracking control algorithm for a non-holonomic wheeled mobile robot using optimization technique based nonlinear PID neural controller in order to follow a pre-defined a continuous path. As simple and fast tuning algorithms, particle swarm optimization algorithm is used to tune the nonlinear PID neural controller's parameters to find best velocity control actions for the mobile robot. Simulation results show the effectiveness of the proposed nonlinear PID control algorithm; this is demonstrated by the minimized tracking error and the smoothness of the velocity control signal obtained, especially with regards to the external disturbance attenuation problem.