Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Absorption


Absorption of Carbon Dioxide into Aqueous Ammonia Solution using Blended Promoters (MEA, MEA+PZ, PZ+ArgK, MEA+ArgK)

Farah T. Al-Sudani

Engineering and Technology Journal, 2020, Volume 38, Issue 9, Pages 1359-1372
DOI: 10.30684/etj.v38i9A.876

Absorption of CO2 into promoted-NH3 solution utilize a packed column (1.25 m long, 0.05m inside diameter) was examined in the present work. The process performance of four different blended promoters monoethanolamine (MEA)+ piperazine (PZ), piperazine (PZ)+ potassium argininate (ArgK) and monoethanolamine +potassium argininate was compared with unpromoted-NH3 solution by evaluated the absorption rate (φ_(CO_2 )) and overall mass transfer coefficient (K_(G,CO_2.) a_v) over the operating ranges of the studied process variables (1-15Kpa initial partial pressure of CO2, 5-15 Liter/min gas flow rate, 0.25-0.85 Liter/min liquid flow rate). The results exhibit that the absorption behavior and efficiency can be enhanced by rising volumetric liquid flow rate and initial CO2 partial pressure. However, the gas flow rate should be kept at a suitable value on the controlling gas film. Furthermore, it has been observed that the (PZ+ArgK) promoter was the major species that can accelerate the absorption rate and reached almost 66.166% up to123.23% over that of the unpromoted-NH3 solution.

Dynamic Study of Carbon Dioxide Absorption Using Promoted Absorbent in Bubble Column Reactor

Safa A. Al-Naimi; Farah T. Jasim; Ahmed N. Kokaz

Engineering and Technology Journal, 2019, Volume 37, Issue 1C, Pages 70-78
DOI: 10.30684/etj.37.1C.11

The most common process to remove carbon dioxide from natural gas and the flue gasses is absorption into suitable solvents. Absorption of carbon dioxide are studied experimentally in this work using bubble column reactor (glass cylindrical (QVF) of 7.5 cm i.d. × 140 cm height), where different types of absorbent (30%MEA, 30%K2CO3), promoter types (organic(piperazine)and inorganic(amino acids)) and concentrations were examined over a wide range of gas flow rate cover homogeneous to transition flow regime at ambient temperature and atmospheric pressure. The results showed that the dissolved gas undergoes a pseudo-first order reaction, and the optimum superficial velocity of gas given a higher conversion and rate of reaction at Ug=0.025 m/sec, at this velocity the reaction rate of monoethanolamine with carbon dioxide (94.1% conversion and RA = 7.75*10-3 Kmol/m3 .sec) is higher than reaction rate of potassium carbonate with carbon dioxide(29.3% conversion and RA = 2.73*10-3 Kmol/m3 .sec). Furthermore, the addition of promoters to the 30%K2CO3 absorbents enhanced the reaction between potassium carbonate with carbon dioxide and increased the reaction rate when increasing the concentration of promoters to the critical concentration. The results show that the piperazine is a better promoter from other types of the amino acid promoter used was 52.1% increase in carbonate conversion with carbon dioxide

Perovskite Thin Film Preparation and Energy Band-Gap Determination for Solar Cell Applicatiosn

Thaira Z. Altayyar; Shubhra Gangopadhyay

Engineering and Technology Journal, 2016, Volume 34, Issue 14, Pages 2611-2620

Using Perovskite is a promising approach for upgrading the performance of an established low-bandgap Si photo voltaic (PV) solar technology because Perovskite is a high bandgap polycrystalline semiconductor compared with bulk Si and other semiconductors such as GaAs. In this work, Perovskite-structured methyl ammonium lead triiodide CH3NH3PbI3 uniform one-step planar thin films nanoparticles (NPs) have been developed from the reaction process of methylammonium iodide with PbI2 and deposited on a glass substrate by Aerosol Assisted Chemical Vapor Deposition (AACVD) to minimize the size of the solar cell and to reduce the cost and increase efficiency. This aims at the study and investigation of the energy bandgap (Eg) of nano-architectured solar cells absorber film as light harvesters. The X-ray diffraction (XRD) patterns of a CH3NH3PbI3 film on glass substrates are recorded by X' Pert Ultima IV X-ray diffractometer. Optical band gap of CH3NH3PbI3 is estimated by UV−Vis absorption spectroscopy and extracted from the absorption spectrum of the Tauc plot to be 1.63 eV. The Perovskite deposited on glass appears efficient to absorb most of the light with wavelength below 800 nm with a refractive index (n): 2.75. The film thickness was measured by an optical profile-meter to be about 200 nm, giving small reflectivity of 0.23 and resulting in efficiency enhancement of 15.7 %.

Effect of Solvents on the Photophysical Properties of the Polystyrene Solutions

Esam A. Tawfi; Mohammed M. Rasheed

Engineering and Technology Journal, 2016, Volume 34, Issue 5, Pages 691-696

The aim of this work was to investigate the photophysical behavior of polystyrene solutions under the effect of different solvents at different concentrations .Testband at 262 nm. There was no effect of solvents and concentration on the position of the maximum absorption wavelength. The data show that a strong dependence between absorbance intensity and concentration. Polystyrene in chloroform, cyclohexane and dichloromethane showed fluorescence monomer emission at 296nm. Excimer emissions were recorded for polystyrene in chloroform, cyclohexane, dichloromethane and tetrahydrofuran at 307nm, 325nm, 327nm and 330nm respectively. Solvents have effect on the fluorescence quantum yield magnitude, where highest value of it had been recorded in cyclohexane (55%)

Thermal Properties of Recycle Aggregate Concrete with Different Densities

Amer M. Ibrahim; Shakir A. Al-Mishhadani; Noor Al Huda H. Ahmed

Engineering and Technology Journal, 2015, Volume 33, Issue 9, Pages 2027-2038

The present research intended to determine thermal properties (thermal
conductivity, thermal diffusivity and specific heat) of concrete manufactured by recycle waste of clay brick and thermostone for using it as aggregate after crushing process. For this purpose, three concrete mixes were prepared one of them using crushed clay brick as aggregate and two others were used crushed thermostone as aggregate too, these three mixes compared with reference normal concrete mix.
Specific heat was measured by using semi-adiabatic calorimeter method whereas thermal diffusivity was measured by using heating-cooling system. Thermal conductivity was obtained by multiplying the thermal diffusivity, specific heat and density. From experimental laboratory work, it was concluded that the thermal diffusivity increase with concrete density increment, but the specific heat was decreased with concrete density increment. Thermal conductivity had a linear relationship with thermal diffusivity. Mixing ratio also had an influence on thermal properties of concrete.

Effect of TiO2 Nanoparticles on Water absorption and shrinkage of the PVA/CS Blend and PVA/CS nanocomposites thick Films

Harith Ibrahim jaafer; Abeer Mohamad Abed

Engineering and Technology Journal, 2015, Volume 33, Issue 7, Pages 1232-1243

In this paper the effect ofaddition0.2,0.4,0.6,0.8,1gofTitanium oxide (TiO2)Nanoparticles inwater absorption, dimensions change and thickness for Polyvinyl alcohol (PVA)/Corn Starch(CS)10g/10g blend and PVA/CS/TiO2 thick films have been studied. Films were prepared using solution casting method. Films were immersing in water for 60 days. The results show that, the water absorption and dimensions change decrease with increasing nanoparticles content, but thickness increase with increasing nanoparticles after immersion, also weightlosing, dimensions change and thickness were found after drying. The results show that the weightlosing, dimensions change decrease with increasing nanoparticles, reducing in thickness increase with increasing nanoparticles

Study of Some Physical Behavior for Polycarbonate In Two Different Solvents at Room Temperature

Khalid Mershed E; Raouf Mahmood Raouf; Harith Hasoon Jasim

Engineering and Technology Journal, 2012, Volume 30, Issue 3, Pages 354-363

The goal of this research was to study some Rheological and optical properties of
poly carbonate in (chloroform and toluene) with different concentrations to know the
physical behavior of this polymer in two solvents at room temperature.It was
determined that the value of polymer solution in these two solvents with different
concentrations and the optical absorption, average viscosity molecular weight
Effective molecular radius. The results have shown that the values of density, (shear,
relative, specific, reduced, original) viscosities, Effective molecular radius and
average viscosity molecular weight, increase with poly carbonate concentration in
two solvents.The results also showed that prepared concentrations density was
significantly influenced by the density of solvents used; this influence was not in the
same magnitude for the rest of measurements and calculations. This may be due to
the dynamic behavior of the polymer in a solvent.