Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Baghdad


Programing and Procedure Design of Stand-alone PV System for Clean Energy Home Supply in Baghdad

Sarah A. Al-shammari; AbdulHassan A. Karamallah; sattar J Habeeb

Engineering and Technology Journal, 2021, Volume 39, Issue 7, Pages 1164-1173
DOI: 10.30684/etj.v39i7.1976

Global demand for energy production is in an increasing trend. However, a gap between energy production and energy demand still represents an industrial challenge. Iraq, like too many developing countries, is an example of such problematic. To tackle these issues, renewable energy could be a valid solution. Renewable energy becomes necessary especially the unique location of the received solar energy and long daylight. Many pieces of research deal with maximum benefit from this condition. This paper discusses the design stand-alone PV system for one home in Baghdad and sizing all components in that system start with energy demand, inverter power, PV, battery bank, and connections with each other by design a simple calculation program. Computational modeling was performed to evaluate different designs. Cost efficiency of system performance based on the domestic market prices was estimated and compared with electrical provide from conventional electrical plants (grid and local generator).

Modelling of Future Water Use Scenarios Using WEAP Model: A Case Study in Baghdad City, Iraq

Mustafa M. Al-Mukhtar; Ghasaq S. Mutar

Engineering and Technology Journal, 2021, Volume 39, Issue 3A, Pages 488-503
DOI: 10.30684/etj.v39i3A.1890

Iraq is one of the Middle East countries that suffer from water scarcity. In addition to the water policy of the upstream riparian countries; rapid population increase, economic growth, and climate changes are the major stressors of water resources available for domestic and agricultural sectors in this country. Therefore, it is of importance to determine the optimal water management methodology. This study aims to identify the optimal water allocation among the domestic, agricultural, and industrial sectors of Baghdad city under present and potential future scenarios. As such, the WEAP model was used to assess and analyze the current and projected balance of water resource management. The model was firstly calibrated and validated using the monthly streamflow data at Sarai station on the Tigris River. Subsequently, the calibrated model was fed with different future scenarios over the period 2020-2040. The employed future scenarios included normal growth population rate (I), high growth population rate (II), halved river discharges (III), combined scenario of the high population with halved water flow (ΙV) and the simulated future water year type scenario (V). Results proved that the WEAP model satisfactorily modeled the water supply/demand in Baghdad with R2 and Pbias of 0.73 and 2.43%, respectively during the validation period. Also, it was found that the water demand and supply were unmet under all proposed future scenarios which implies that there is a swift need for sustainable water management in Iraq and in Baghdad.

Groundwater Quality Assessment in Urban Area of Baghdad, Iraq, Using Multivariate Statistical Techniques

Alhassan H. Ismail; Muntasir A.H; Reem J. Channo

Engineering and Technology Journal, 2015, Volume 33, Issue 2, Pages 463-476

An attempt has been made to assess the overall groundwater quality and identify major variables affecting the groundwater quality in the urban area of Baghdad, Iraq. Groundwater samples from tube wells of 66 sampling sites were analyzed for the major physicochemical variables during May 2010. From the Hill–Piper trilinear diagram, it is observed that the majority of ground water from sampling sites are Ca2+ -Mg2+ -Cl- -SO42- type and Na2+ -K+ -Cl- -SO42- type water. Multivariate statistical techniques such as factor analysis and cluster analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality of Baghdad. Factor analysis identified three major factors explaining 82.506% of the total variance in water quality; and the major variations are related to degree of mineralization of the geological components of soils, irrigation return flow, agricultural activities and mixing of wastewater. Hierarchical cluster analysis revealed three different groups of similarities between the sampling sites, reflecting different physicochemical properties and pollution levels in the groundwater quality.

Radon Concentrations Assessment and Effective Dose Estimation in The Buildings of University of Technology/ Baghdad

Sahar A. Amin; Saadi M. D. Al-Nuzal; Muwafaq H. M. Lami and; Shemaa K. Kataa

Engineering and Technology Journal, 2014, Volume 32, Issue 13, Pages 3216-3227

The objective of the present work was to assess the distribution of radon in the University of Technology buildings, Baghdad - Iraq and to identify the effective dose of radon exposure to the staff using passive dosimeter (SSNTD) CR-39. One hundred CR-39 dosimeters were distributed over different buildings in the University campus according to the number of floors area. The exposure time started from December 2012, and the dosimeters were left inside buildings for 40 days. Only 93 dosimeters were collected, while the remaining 7 were considered lost. The average concentrations were calculated in units of Bqm-3, for each sample in each building, and then are repeated after grouping in each floor of the same building. The average radon concentrations per building and at the university as a whole were also calculated.
Radon concentrations were found to vary from 80.1 to 416.7 Bqm-3. The highest radon concentration with a mean value of 416.7 Bqm-3 was found atuniversity press section building, while the lowest radon concentration was found at the welding division 2 building with a mean value of 80.1 Bqm-3. The average value of radon concentration at the university was found to have the value of 181.9 Bqm-3 which is less than the recommended value of 200 Bqm-3 UNSCEAR [18].
Dose rate (in µSv/h), annual dose rate (in mSv/y & WLM/y), cumulative dose (in mSv& WLM) and cancer risk were also calculated. It was found that the university staffs are exposed annually to 2.083 mSv which equal to 0.231 Working Level Month (WLM) from radon gas and its short-lived daughters. Hence, a person takes on the average an annual effective dose equivalent to 2.56and 1.84mSv according to average value considered by UNSCEAR [18] and ICRP [19], respectively. This implies an expected value for lung cancer probability of 0.0046.