Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Mild steel

Comparative Study of Different Organic Molecules as an Anti-Corrosion for Mild Steel in Kerosene

Eva A. Yaqo; Rana A. Anaee; Majid H. Abdulmajeed

Engineering and Technology Journal, 2020, Volume 38, Issue 3A, Pages 423-430
DOI: 10.30684/etj.v38i3A.507

The investigation on the efficiency of three organic derivatives was done as inhibitors for carbon steel using electrochemical methods at four temperatures (303, 313, 323, and 333 K) and 100 ppm. The results showed that these prepared compounds gave good efficiencies at experimental conditions by adsorption process and they act as mixed-type inhibitor, the data of corrosion were measured and debated. Using SEM, the inhibited surface of specimens was characterized. In addition, for display the interaction between these compounds and the metallic surface, the Fourier transform infrared spectra was used. In addition, the activity of antibacterial of the inhibitors against some types of bacteria was tested.

Experimental Study of 2-Amino-5-(4- nitrophenyl)-1, 3, 4-Thiadiazole for MS in HCl Solution

Talib K. Abed; Khalida F. Al-Azawi; Shaimaa H. Jaber; Ahmed A. Al-Amiery; Shaimaa B. Al-Baghdadi

Engineering and Technology Journal, 2019, Volume 37, Issue 2C, Pages 214-218
DOI: 10.30684/etj.37.2C.3

The present work aims to study the inhibition performance of new organic inhibitor namely ANTD “2-amino-5-(4-nitrophenyl)-1,3,4- thiadiazole” on corrosion of mild steel (MS) in HCl environment at the concentration of 1.0 M through using weight loss techniques. Weight lost measurements demonstrates the presence of a film on MS surface in existence of organic substance. The inhibition performance of ANTD at various concentrations for mild steel increases with increasing concentration and with an increased in the immersion time and decreased with raising temperatures degrees. The optimal inhibition efficiency of (ANTD), 82%, was achieved for mild steel when immersed with the highest utilized concentration for 6 hrs.

Green Corrosion Inhibitor for Protection of Mild Steel

S.A. Ajeel

Engineering and Technology Journal, 2017, Volume 35, Issue 9, Pages 914-921

In the present work, corrosion inhibition of Mild steel in 1M H2SO4 solution by Rosmarinus Officinalis Leaves extract was studied by weight loss and potentiostatic methods. Increasing acid concentration leads to an increase in the corrosion rate of the electrode. The variable conditions used in this investigation are (100 to 1000 ppm at 25oC. Rosmarinus Officinalis Leaves extract for Mild steel. It has been found that the concentrates as a compelling consumption inhibitor for gentle steel in acidic medium. The hindrance process is credited to the development of an adsorbed film of inhibitor on the metal surface, which secures the metal against corrosion. The inhibition efficiency was observed that increase with increasing inhibitor concentration up to maximum 92% for 1000 ppm at 25 oC. The results show that the corrosion rate without inhibitor is 5.6 mpy while with inhibitor be 0.43 mpy, that is mean the corrosion rate was improved more than 90%. The effects of immersion time (2 h) at 25oC on the inhibition of corrosion have also been improved corrosion resistance. The results obtained show that Rosmarinus Officinalis Leaves Extract could serve as an excellent friendly green corrosion inhibitor. FTIR results indicate that this herb containing different chemical bonds (C-C, CH2, C-O-C, Cellulose) with steel surface producing barrier layer to protect the surface