Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : ascent


Biomechanical Analysis of Human Stair Climbing (Ascending and Descending)

Sadiq Jafer Abbass

Engineering and Technology Journal, 2012, Volume 30, Issue 5, Pages 755-774

Because stair climbing is a common activity of daily living, the ability to do it efficiently is important to an individual's quality of life. More demanding than level walking, stair ambulation is performed with ease by healthy individuals; however, it is more difficult to perform for those with decrements in motor function, balance
problems, or reduced lower-limb function. The difficulty with stair climbing is attributable to increased muscular demands, which are reflected in larger forces, angles, powers, moments, and ranges of motion, and these increased demands occur consistently at the knee joint. Kinematic system is used in stair climbing to record the position and orientation of the body segments, the angles of the joints and the corresponding linear and angular velocities and acceleration. The purpose of the study is to show an ideal kinematics appearance of human gait cycle for stair climbing in order to get measurement values
that can be depended on in the hospitals of rehabilitation, the centers of physical therapy and the clinical of medical sports as a reference data for kinematic joint parameter. In this study, 5 subjects were selected from the society, then a video recording was made for them by using a single digital video camera recorder fitted on a stand of three legs in a sagittal plane while subjects climbing a stair one by one for
different stair heights. Motion analysis was used to study the knee and hip joint kinematics. As a result, it was observed that the range of motion at the hip joint is between (10°-70°) at ascending and the range is between (20°-50°) at descending. The range of motion at the knee joint is between (20°-90°) at ascending and the range is
between (10°-100°) at descending. The range of motion at the ankle joint is between (-25°-20°) at ascending and the range is between (-25°-15°) at descending. Also it was found that the angular velocity at the hip joint is between (-10-10) deg/s for ascending and (-15-25) deg/s for descending. The angular velocity at the knee joint is
between (-40-30) deg/s for ascending and (-30-50) deg/s for descending. The angular velocity at the ankle joint is between (-30-20) deg/s for ascending and (-15-15) deg/s for descending. In this study, biomechanical characteristics of lower limb joint upon
various stair height were presented and these data can be applied to biomedical research field that include wearable walking assistant robot.