Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : Sliding Mode Controller


Development of a Swing-Tracking Sliding Mode Controller Design for Nonlinear Inverted Pendulum System via Bees-Slice Genetic Algorithm

Ahmed Sabah Al-Araji

Engineering and Technology Journal, 2016, Volume 34, Issue 15, Pages 2897-2910

A new development of a swing-tracking control algorithm for nonlinear inverted pendulum system presents in this paper. Sliding mode control technique is used and guided by Lyapunov stability criterion and tuned by Bees-slice genetic algorithm (BSGA). The main purposes of the proposed nonlinear swing-tracking controller is to find the best force control action for the real inverted pendulum model in order to stabilize the pendulum in the inverted position precisely and quickly. The Bees-slice genetic algorithm (BSGA) is carried out as a stable and robust on-line auto-tune algorithm to find and tune the parameters for the sliding mode controller. Sigmoid function is used as signum function for sliding mode in order to eliminate the chattering effect of the fast switching surface by reducing the amplitude of the function output. MATLAB simulation results and LabVIEW experimental work are confirmed the performance of the proposed tuning swing-tracking control algorithm in terms of the robustness and effectiveness that is overcame the undesirable boundary disturbances, minimized the tracking angle error to zero value and obtained the smooth and best force control action for the pendulum cart, with fast and minimum number of fitness evaluation.

On-Line Tuning Sliding Mode Controller Design for Nonlinear Inverted Pendulum System based on Bees Algorithm

Khulood E. Dagher; Ahmed Ibraheem Abdulkareem

Engineering and Technology Journal, 2016, Volume 34, Issue 8, Pages 1575-1587

This paper proposes a modified swing control for a nonlinear inverted pendulum system by utilizing the sliding mode controller based on the on-line tuningBeesalgorithm as speed of optimization and accuracy of results. The goal of the proposed nonlinear controller is to obtainthe optimal force control action for the pendulumcart in order to stabilize the pendulum in the inverted position precisely and quickly.The optimal parameters of the nonlinear controller are on-line tuned by Bees algorithm and guided by Lyapunov stability criterionto reduce the amplitude of the sliding mode signum function in order to eliminate the chattering phenomena and make the smoothness control action.Matlab simulation results confirm the validity of the proposed controller algorithm in terms offast dynamic response, minimizing the pendulum’s angle tracking error to the zero radianat 2.5 second and obtaining the optimal and smooth force control action without saturation state, with the minimum number of fitness evaluation of the algorithm.