Print ISSN: 1681-6900

Online ISSN: 2412-0758

Keywords : PCM

Analysis of Thermal and Insulation Performance of Double Glazed Window Doped With Paraffin Wax

Jalal M. Jalil; Salih M. Salih

Engineering and Technology Journal, 2020, Volume 38, Issue 3A, Pages 383-393
DOI: 10.30684/etj.v38i3A.448

In this paper, a numerical investigation has been performed to study the effect of varying the thermal properties of the paraffin wax on the performance of a double glazed window doped with it during the summer climate of Baghdad (33.3 °N, 44.4 °E). Using FORTRAN (f 90) constructed computer program, finite difference combined with the enthalpy method was utilized to deal with the conduction with phase change problems within the wax. Results obtained show that increasing the density, latent heat, and thickness of the paraffin wax PCM) would increase the temperature-time lag and reduce the temperature decrement factor of the double glazed window, and as a result, improve comparatively the performance of the unit. In contrast, changing the specific heat capacity of the paraffin wax is not a productive (inefficient) technique to develop the performance of the unit. Besides, the recommended thickness of the window (thickness of the PCM) under the ambient condition of Baghdad should be 20 mm or higher.

Thermal Storage Efficiency Enhancement for Solar Air Heater Using a Combined SHSm and PCM Cylindrical Capsules System: Experimental Investigation

Akram H. Abed

Engineering and Technology Journal, 2016, Volume 34, Issue 5, Pages 999-1011

Thepresent work aims to enhance the thermal storage efficiency and thermal behavior for solar air heater integrated with cylindrical capsulessystem. The cylindrical capsule has diameter 50 mm and length 600 mm, placed in the crossflow of airstream.In this experimental study, a high specific heat of latent heat storage materials (PCM-paraffin wax) wereinvestedto increase the stored ability for sensible heat storage materials (pure sand). Three cases are testedunderconstant incident irradiation 1000Wm-2, in the first case cylindrical capsules packed with pure sand, second case cylindrical capsules packed with compound (sand+10% PCM) and third case cylindrical capsules packed with compound (sand+20% PCM), for both natural convection and forced convection with different mass flow rates (0.5 , 1.132 kg/min). The experimental results indicated that the compound (sand+20%PCM) gives the best thermal storage duration (380 min),with increase in outlet air temperature by approximately 5.6 % in forced convection with (0.5 kg/min) compared with pure sand (240 min). For forced convection with (1.132 kg/min), compound (sand+20%PCM) gives (355 min) thermal storage duration with increase in outlet air temperature by approximately 9.2 % compared with pure sand (220 min).Increase of mass flow rate leads to decrease the outlet air temperature period time of the discharge process.

Numerical Investigation of Energy Storage in Packed Bed of Cylindrical Capsules of PCM

Ahmed K. Alshara; Mohammed Kh. Kadhim

Engineering and Technology Journal, 2014, Volume 32, Issue 2, Pages 494-510

A theoretical study of storage thermal energy using capsulated cylinders filled with phase change material PCM is performed. These cylinders are arranged in-line in the direction of heat transfer fluid. The energy equations of fluid (water) and PCM capsules are solved numerically using finite volume method with heat capacity method for phase change of PCM. The effect of Reynolds number and the ratio of pitch to diameter of the cylinders on the temperature distribution and melt fraction are presented. The results show that the increment of both Reynolds number and the ratio of the pitch to diameter gives decrement in the final time of melting of PCM in the cylinders.