Print ISSN: 1681-6900

Online ISSN: 2412-0758

Main Subjects : Production & Metallurgy


Influence of Machining Parameters on Surface Roughness in Chemical Machining of Silicon Carbide (SiC)

Naeem A. Abdulhusein; Abbas F. Ibrahim; Abdullah F. Huayier

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 51-60
DOI: 10.30684/etj.v40i6.1879

This study discussed the influence of chemical machining parameters such as (machining time, type of etchant, etching temperature, and concentration of the solution) on the surface roughness of ceramic material (silicon carbide) as a workpiece in the chemical machining (CHM) process. To achieve the best value for surface roughness. In this research, four levels of factors affecting the chemical etching process were used, the values of etching temperature (60, 80, 100, and 120) °C, the etchant concentration (50, 60, 70, and 80) %, and machining time (30, 50, 70, and 90) min, and two etchant type (HBr, HCl). Experiments proved the best value of surface roughness is obtained (2.933) µm experimentally and (2.958) µm at a predictable program when using hydrochloric acid (HCl) at a temperature (80) °C, time (50) min, and etchant concentration (50) %. The coefficient determination (R-sq) to predict the surface roughness is ((93.7).

Effect of Abrasive Water Jet (AWJ) Parameters on Materials Removal Rate for Low Carbon Steel

Ameer J. Nader; Saad K. Shather

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 61-70
DOI: 10.30684/etj.v40i6.2123

Abrasive water jet (AWJ) is one of the most advanced and valuable non-traditional machining processes because of its massive advantages of removing metal from hard and soft metals. This paper has studied the effect of jet pressure, feed rate, and standoff distance on material removal rate throughout abrasive water jet cutting of carbon steel metal workpieces. The material removal rate was assessed using a precision balance device by performing sixteen experiments to identify the ratio of weight loss to total cutting time. The Taguchi method was introduced to implement the experiments and indicate the most influential process parameters on material removal rate. The experimental results showed that feed rate and pressure jet had the most effect on material removal rate. The best material removal rate value was 3.71 g/min at jet pressure 300 MPa, feed rate 30 mm/min, and standoff distance 4mm.

Improvement of Metal Forging Processes by Stresses and Temperatures Analysis

Adnan I. Mohammeda; Ibrahim K. Ahmed; Munir A. Allow

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 41-50
DOI: 10.30684/etj.v40i6.2169

The mechanical components are produced by various fabrication methods, although forged products have excellent mechanical characteristics at a minimal cost. The stress and temperature analysis process in the closed die hot forging contributed to finding failure regions in these dies through simulations in the FE program. This enables the process to be improved and reduced time and mineral losses. A simplified model was used to represent the forming process, with a temperature of (1150-950 °C) was simulated using MSC Simufact software. The forge fastener head product is formed with a horizontal mechanical press of 800 tones. In this research, the workpiece material used Ck45 alloy steel, 56NiCrMoV 7 tool material. The results illustrate the maximum equivalent stresses values, and the maximum value was 739.70 MPa / 240.64 on lower die and product at a heating temperature of 950 °C, respectively. The local plastic deformation would be expected at places where the maximum stress is generated and exceeds the yield strength of the die material.

Effect of Voltage on Electrode Wear Rate (EWR) in the Electrical Discharge Machining (EDM) for Stainless Steel AISI 444

Shukry H. Aghdeab; Anwer Q. Abdulnabi

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 21-30
DOI: 10.30684/etj.v40i6.2144

Electrical Discharge Machining process (EDM) is a nontraditional metal removal technique that uses thermal energy to erode the workpiece without generating any physical forces of cutting between the tool and the machining part. It is used to cutting of hard and electrical conductivity materials and product intricate shapes of products. The aim of this work is to study the effect of changing voltage values on electrode wear rate (EWR). The machining parameters includes voltage (V), peak current (Ip), pulse duration (Ton) and finally, pulse interval (Toff). The results show that the EWR was increase with rising in voltage, peak current and pulse duration values but when the pulse interval value rises, the electrode wear rate reduce. The best (EWR) value was (0.093507) mm3/min that obtained at voltage (140) V, Ip (12) A, Ton (400) µs and  Toff (12) µs.

Properties of Welded Copper Tubes Fabricated Via Friction crush Welding

Abduljabar Joma; Akeel D. Subhi; Fadhil A. Hashim A. Hashim

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 1-10
DOI: 10.30684/etj.v40i6.2292

The welding process is one of the fabrication processes in which tubes can be performed for structural purposes and transport liquids or gases. This study is focused on the manufacturing, characterization, and evaluation of mechanical properties of welded tubes made from oxygen-free copper (C1020) sheets using friction crush welding. The welded tubes were produced using different tool rotation speeds (1500, 1600, and 1700 rpm) and feed rates (130, 140, and 150 mm/min). The flanged edge height of 2.5 mm and 0.5 mm gap between the ends of the copper sheet was used. All examinations on welded tubes were achieved using different instruments such as optical microscopy, SEM, hardness, and tensile testers. The microstructure study showed good weld quality and good material flow between the two ends of the copper sheet in the weld zone. Moreover, the weld zone was not defective. The lowest hardness was identified in the crush zone due to the coarseness of the copper grains. The highest tensile strength of 105 MPa was obtained at the tool rotation speed of 1500 rpm and 130 mm/min feed rate. The results also showed that ductile fracture is the main source of failure.

Studying the Effect of un Coated and Multilayer Coated Tools on Cutting Temperature in Turning Operation

Farhan kamil; Maan A. Tawfiq; Salah K. Jawad

Engineering and Technology Journal, 2022, Volume 40, Issue 6, Pages 66-75
DOI: 10.30684/etj.v40i6.2265

The present work studies three variables (cutting velocity, feed rate, and cut depth) on hard turning cutting temperature of uncoated and multilayer-coated carbide (TiN, TiN/TiCN, TiN /Al2O3/ TiCN) inserts are used in AISI 1045 alloy steel. The tool's temperature was measured simultaneously, measuring the temperature of the tool-chip interface using infrared radiation (IR) pyrometer in this investigation.  This study investigated the performance of four distinct coated and uncoated PVD and CVD tools during turning operations. Four cutting speeds (56, 88, 112, 141) m/min, four feed rates (0.065, 0.08, 0.16, 0.228) mm/rev.,  in the experiments, a constant cutting depth of (1) mm was used.  The results also show that Coarse cutting tools have a lower tool temperature than uncoated ones. In comparison to uncoated and other coated tools, the three-layer (TiN/ Al2O3/ TiCN) coating is especially effective in a range of (32% to 39%) than uncoated inserts at various cutting velocity and constant feed rates, with varying feed rates and consistent cutting velocity and lower by approximately( 34% to 40%) than uncoated inserts.