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ABSTRACT 
     Modern power systems are complex and non-linear and their operating conditions 
can vary over a wide range, and since neuro - fuzzy network can be used as intelligent 
controllers to control non-linear dynamic systems through learning, which can easily 
accommodate the non-linearity, time dependencies, model uncertainty and external 
disturbances. A Neuro-Fuzzy model system is proposed as an effective neural networks 
controller model to achieve the desired robust Automatic Voltage Regulator (AVR) for 
Synchronous Generator (SG) to maintain constant terminal voltage. The concerned 
Neuro-fuzzy controller for AVR is examined on different models of SG and loads. The 
results shows that the Neuro-Fuzzy -controllers have excellent responses for all SG 
models and loads in view point of transient response and system stability compared 
with optimal PID controllers tuned by practical swarm optimization. Also shows that 
the margins of robustness for Neuro-Fuzzy -controller are greater than PID controller.  
 
Keywords: Synchronous Generator (SG), Automatic Voltage Regulator (AVR) system, 
Neuro-Fuzzy controller, PID controller, Robust AVR. 
 
 دراسة متانة منظم الجھدالالي للمولد المتزامن المستند على الشبكات العصبیة الضبابیة

 
 الخلاصة

 كونولاخطّیة وحالة تشغیلھا یمكن أن تتفاوت على مدى عریض، ولانظمة القدرة الكھربائیة الحدیثة معقدّة     
ة لاخطّیة كیذكیة على أنظمة دینامی اتیطركمسیمكن أن تستعمل   (Neuro - Fuzzy) الضبابیة الشبكات العصبیة

ضطرابات الإو ,عدم وثوقیة النموذج ، اعتمادھا على الزمنخطیة بسھولة، اللا لائمتخلال تعلیمّھا، التي یمكن أن 
 ز منظّم الفولطیة الآلي انجلاشبكات عصبیة فعاّل  كمسیطر ضبابيال -العصبينموذجي النظام  تم اقتراحخارجیة. ال

(AVR)للمولّد المتزامن  المتین المطلوب (SG) الشبكات مسیطر  تم فحص  .لإبقاء الفولطیة الطرفیة ثابتة
 انالنتائج  بینت و والأحمال.المتزامنة  اتلمنظّم الفولطیة الآلي على نماذج مختلفة من المولّد الضبابیةالعصبیة 

 ھة نظرمن وج ة والاحمالالمتزامن اتالمولدّ نماذج ممتازة لكلّ  استجابةلھا  الضبابیة العصبیة اتسیطرمال
 تكما بین. ئيیالمنغمة بواسطة تقنیة الحشد الجز PID   اتسیطربم مقارنةوإستقرار النظام  ةالعابر الاستجابة

 PID . مسیطرمن  أكبر الضبابیة ةالعصبی الشبكات مسیطرل المتانة أیضا بأنّ ھوامش النتائج
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INTRODUCTION 
ynchronous generators are the primary source of all electrical energy and used 
almost exclusively in power systems. SGs are nonlinear, fast acting; Multi-Input 
Multi-Output (MIMO) systems which are continuously subjected to load 

variations and the AVR design must cope with both normal load and fault condition of 
operation. Evidently, these conditions of operation result to considerable changes in the 
system dynamics [1]. The goal of robust systems design is to retain assurance of system 
performance in spite of model inaccuracies and changes. A system is robust when the 
system has acceptable changes in performance due to model changes or inaccuracies 
[2]. 
    The automatic voltage regulator (AVR) is the essential part in the excitation system 
to control the terminal voltage and the reactive power in addition to enhance the 
machine stability. The Block diagram of synchronous generator and AVR is shown in 
figure (1) [3].  
     Many researchers used different control methods for AVR such as pole placement 
and pole–zero cancellation [4], PID control [5], optimal control [6], adaptive control 
[7], neural control [3,8], and fuzzy control [9]. Neuro-fuzzy controller is resulted from 
the fusion of neural networks and fuzzy logic. The advantages of both approaches are 
thus merged [10]. 
     PID has been widely used in the AVR because of its simple structure and robust 
performance in a wide range of operating conditions. Unfortunately, it has been quite 
difficult to tune properly the gains of PID controllers. The Particle Swarm Optimization 
(PSO) algorithm has been proposed to generate the optimum Proportional, Integral and 
Derivative gains of the controller [11].  
    The designed AVRs by control methods which are mentioned in previous paragraph, 
each one is applied on only one synchronous generator. The AVR designed in [12] is 
applied on different types of non-linear SGs models and loads, in order to test the 
robustness of the controller.  This paper is focused on the robustness of AVR using 
neuro-fuzzy controller and applied on different types of non-linear SGs models and 
loads and then compared with AVR using optimal PID controller tuned by PSO.  
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Figure (1): Block diagram of synchronous generator and AVR. 
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Mathematical Model of the Synchronous Generator: 
     Any kind of modeling of electrical machine such as synchronous generator starts 
with measurements on real model because it is necessary to determine all essential 
parameters. The other possibility is to obtain generator parameters from manufacturer 
or determinate our own parameters if generator prototype is being build [13]. After that 
the generator model can be made by using all mathematical equations which describe 
the generator. The simulated model of the synchronous generator is represented in 
MATLAB/ SIMULINK. The central concept underlying the development of the 
mathematical models of ac machines is the representation of the variables for voltages, 
currents and fluxes by means of space vectors that are expressed in different reference 
frames. These reference frames or coordinate systems: the triplet [VRaR VRbR VRcR] denotes a 
three-phase system attached to the stator while the pair [VRqR VRdR] corresponds to an 
equivalent two-phase system quadrature and direct phase The basic approach to 
modeling involves the transformation of the stator and rotor equations to a common 
reference frame [3].        
    MATLAB/SIMULINK toolbox synchronous generator model used in this work takes 
into account the dynamics of the stator, field, and damper windings. The equivalent 
circuit of the model is represented in the rotor reference frame (dq frame). All rotor 
parameters and electrical quantities are viewed from the stator.  
They are identified by primed variables. The subscripts used are defined as follows: 
 
• d,q: d and q axis quantity 
• R,s: Rotor and stator quantity 
• l,m: Leakage and magnetizing inductance 
• f,k: Field and damper winding quantity 
 
The electrical model of the machine is 

qRddsd dt
diRV ϕωϕ −+=                                                         …(1)  

Where 
)( ''

kdfdmdddd iiLiL ++=ϕ  and 
'
kqmqqqq iLiL +=ϕ  

dRqqsq dt
diRV ϕωϕ ++=                                                          … (2) 

'''
fdfdfdfd dt

diRV ϕ+=                                                           …(3) 

 
Where  

 )( ''''
kddmdfdfdfd iiLiL ++=ϕ  

'''
kdkdkdkd dt

diRV ϕ+=                                                           … (4)   

 
Where  

)( ''''
fddmdkdkdkd iiLiL ++=ϕ  
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Exciter Model:  
     The basic function of an excitation system is to provide direct current to the 
synchronous machine field winding. In addition, the excitation system performs control 
and protective functions essential to the satisfactory performance of the power system 
by controlling the field voltage and thereby the field current. The transfer function of 
the exciter is:  
        G(s) = KR

(1+sTR)
                                                                                                  …(7) 

Where  
TR is the time constant of the static exciter. 
 KR is the gain of static exciter.  
     Since the time constant (TR) of static exciter is very small, then equivalent transfer 
function is became as gain circuit connected between controller and SG, used to gain 
low control signal. 
              G(s) = KR                                                                                                      …(8)     
The value of KR  in this paper is one.                                                                  
 
Sensor Model:  
         The terminal voltage of the SG is being fed back by using a potential transformer 
that is connected to the bridge rectifiers. A sensor may be represented by a simple first-
order transfer function, given by 
 
           Vs(s)

Vt(s)
 = KT

1+sTT
                                                                                                     …(9) 

 
Where  
    KT is the gain of the sensor, TT is the time constant of the sensor. Normal TT is very 
small, ranging from of 0.001 to 0.06 second [6]. So in this paper the value of TT=0.005  
is used: 
      
PID Controller 
     A proportional-Integral-Derivative controller (PID controller) is a generic control 
loop feedback mechanism widely used in industrial control systems. A PID controller 
calculates an "error" value as the difference between a measured process variable and a 
desired set point. The controller attempts to minimize the error by adjusting the process 
control inputs. The proportional term causes a larger control action to be taken for a 
larger error and decrease the rise time of transient response, the integral term is used to 
decrease steady state error and the derivative term supplement the control action if the 
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error is changing rapidly with time by damped the response or decrease the over shoot. 
This equation represent mathematical expression for PID controller [3].                   
  𝑝𝑡 = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡𝑡

0 + 𝑘𝑑
𝑑𝑒(𝑡)
𝑑𝑡

                                                              … (10) 
 
Where 
  𝑒 is error signal, 𝑘𝑝 is  proportional gain, 𝑘𝑖 is integral gain, and  𝑘𝑑 is derivative gain.  
 
Particle swarm optimization  
      Particle Swarm Optimization was originally designed and introduced by Eberhart 
and Kennedy in 1995. The PSO is a population based search algorithm based on the 
simulation of the social behavior of birds, bees or a school of fishes.  Each individual 
within the swarm is represented by a vector in multidimensional search space [14]. 
     In certain circumstances, where a new position of the particle equal to global best 
and local best then the particle will not change its position. If that particle is the global 
best of the entire swarm then all the other particles will tend to move in the direction of 
this particle. The end of result is the swarm converging prematurely to a local optimum. 
If the new position of the particle pretty far from global best and local best then the 
velocity will changing quickly turned into a great value. This will directly affect the 
particle's position in the next step. The rules of PSO are: 
 
v(k+1)i,j = w.v(k)i.j + c1r1( gbest – x(k)i,j ) + c2r2( pbestj – x(k)i,j )                   …(11) 
 
x(k+1)i,j = x(k)i,j + v(k)i,j                                                                                … (12) 
where 
vi,j     : velocity of particle i and dimension j. 
xi,j     : position of particle i and dimension j. 
c1,c2  : known as  acceleration constants. 
w      : inertia weight factor.  
r1,r2   : random numbers between 0 and 1. 
pbest : best position of a specific particle. 
gbest : best particle of the group. 
  
    In the gbest model, the trajectory for each particle’s search is influenced by the best 
point found by any member of the entire population. The best particle acts as an 
attractor, pulling all the particles towards it. Eventually all particles will converge to 
this position. The Pbest model allows each individual to be influenced by some smaller 
number of adjacent members of the population array. The flow chart of figure (2) shows 
the PSO algorithm [9]. 
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Figure (2): Flow chart of PSO algorithm 
 
Neuro-Fuzzy controller  
    In the field of artificial intelligence, Neuro-Fuzzy refers to combinations of artificial 
neural networks and fuzzy logic. Neuro-fuzzy hybridization results in a hybrid 
intelligent system that synergizes these two techniques by combining the human-like 
reasoning style of fuzzy systems with the learning and connectionist structure of neural 
networks. Neuro-fuzzy hybridization is widely termed as Fuzzy Neural Network (FNN) 
or Neuro-Fuzzy System (NFS) in the literature. Neuro-fuzzy system (the more popular 
term is used henceforth) incorporates the human-like reasoning style of fuzzy systems 
through the use of fuzzy sets and a linguistic model consisting of a set of IF-THEN 
fuzzy rules. The main strength of neuro-fuzzy systems is that they are universal 
approximates with the ability to solicit interpretable IF-THEN rules [15].  
     Neural networks are used to tune membership functions of fuzzy systems that are 
employed as decision-making systems for controlling equipment. Although fuzzy logic 
can encode expert knowledge directly using rules with linguistic labels, it usually takes 
a lot of time to design and tune the membership functions which quantitatively define 
these linguistic labels. Neural network learning techniques can automate this process 
and substantially reduce development time and cost while improving performance [16]. 
 
Simulation and Results:  
       The first step in analysis and designing the controllers for the SG is to use the 
mathematical model of the SG which is more reality to the actual plant rather than 

START 

Initialize particles with random position and velocity 

Evaluate particles 

Compare and update pbest 

Compare and update gbest 

Update velocity and position 

Meet stopping criteria 
(number of iterations) 

End 
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linear transfer function model in the control design and studies.  The simulation of SG 
is performed using MATLAB/SIMULINK implementation program (R2010b) version 
7.11.0.584. In this work, salient pole synchronous generators of parameters listed in 
appendix A are used.  
     The AVR was implemented by using two types of controllers: First one was the 
optimal PID controller tuned by practical swarm optimization (PSO). The synchronous 
generator model with PID controller is shown in Figure (3).  
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Figure (3): Power unit with AVR using PID controller 
 

    The second one was the Neuro-Fuzzy -controller using anfis of MATLAB is shown 
in Figure (4) and which was trained by using the data of PID-PSO controller to the 
nominal condition of the synchronous generator model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4): Power unit with AVR using Neural-Fuzzy controller 
 

       The tuned parameters of PID controller for four SG models by practical swarm 
optimization with saturation of 3 (pu) and full load are illustrated in Table (1). In order 
to study the robustness of proposed controller, these designed controllers will be tested 
on six different SGs with wide range of power from 8.1KVA to 187MVA.  
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Figure (5) shows the designed AVRs with PID controllers (in table (1)) which applied 
to the same synchronous generator of 8.1KVA.  
 
 

 
Figure (5): Different PID controllers connected to SG of 8.1KVA 

 
    The time responses for six full load SGs (8.1KVA, 31.3KVA, 250KVA, 910KVA, 
2MVA and 187MVA) with various designed controllers in table (1) are depicted in 
Figure (6, 7, 8, 9, 10 and 11) respectively.  
    The time responses in figure (6) are related to figure (5). It is clear from figure (6) 
that the response of PID controller designed for same SG (8.1KVA) is the best one, and 
then the responses of SG (8.1KVA) for PID controllers designed for SG 31.3KVA, SG 
250KVA, and SG 2MVA respectively. Also figure (6) shows that all responses are 
stable, which gives an opinion on the robustness of designed controllers for SG 
31.3KV, 250KVA and 2MVA.  
     Figure (7) shows the time responses for SG of 31.3 KVA, when the designed AVRs 
with PID controllers in (table (1)) are applied to the same SG of 31.3KVA. This figure 
shows the SG response for the designed PID controller of 31.3KVA is the best one and 
all responses are stable, which gives an opinion on the robustness of designed 
controllers for SG 8.1KV, 250KVA and 2MVA. 

SG model Gains of PID controller 
kp ki kd 

SG of   8.1     KVA 11.837 63.609 0.047 
SG of   31.3   KVA 15.738 32.615 0.0389 
SG of    250   KVA 11.978 13.595 0.00423 
SG of    2     MVA 20.835 3.895 0.00763 

Table (1): PID controllers' gains tuned by PSO 
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    Figure (8) has same remarks on time responses mentioned in figure (6 and 7) and 
gives an opinion on the robustness of designed controllers for SG 8.1KV, 31.3KVA and 
2MVA.  
    Figures (6-11) show every designed controller in table (1) can control six SGs used 
in this paper in addition to the remarks on time response mentioned in previous figures 
(6-8). That’s mean PID controller is a robust controller for synchronous generator. 
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Figure (6): Time responses for SG of 8.1KVA     
with different PID controllers 

Figure (7): Time responses for SG of 31.3KVA 
with different PID controllers 

 

Figure (8): Time responses for SG of 250KVA    
with different PID controllers 

 

Figure (9): Time responses for SG of 910KVA 
with different PID controllers 

 

9 

 



Eng. &Tech.Journal, Vol. 33,Part (A), No.3, 2015      Study the Robustness of Automatic Voltage          
                                                                                         Regulator for Synchronous GeneratorBased        

                                                                                  on Neuro-Fuzzy Network 
 

   
 
 
 
     The Neuro-Fuzzy controllers were trained using the data of PID controllers in table 
(1) with saturation of 3 pu and with full load SGs. The four Neuro-fuzzy controllers 
which applied to the full load synchronous generator of 8.1KVA are shown in Figure 
(12). 
  

 
  Figure (12): Different Neuro-Fuzzy controllers connected to SG of 8.1KVA 
      
Time responses for the six synchronous generators of 8.1KVA, 31.3KVA, 250KVA, 
910KVA, 2MVA, and 187MVA for various Neural-Fuzzy controllers are depicted in 
Figures (13-18) respectively and it's obviously clear that these controllers are robust.    
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Figure (10): Time responses for SG of 2MVA 
with different PID controllers 

 

Figure (11): Time responses for SG of 187MVA 
                  with different PID controllers  
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Figure (13): Time responses for SG of 8.1KVA 
for different Neuro-Fuzzy controllers 

Figure (14): Time responses for SG of 31.3KVA 
with different Neuro-Fuzzy controllers 

 

Figure (15): Time responses for SG of 250 KVA 
with different Neuro-Fuzzy controllers 

 

Figure (16): Time responses for SG of 910KVA 
with different Neuro-Fuzzy controllers 
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The comparison in numerical values for transient response between designed PID 
controller and Neuro-Fuzzy controller for each synchronous generator which applied to 
all SGs used in this paper are shown in tables (2, 3, 4 and 5), where the settling time (ts 
) at error 0.03 (pu) and rise time (tr ) from initial to 97% of the input signal. These 
tables show that the over shoot and settling time for Neuro-Fuzzy controller are less 
than PID controller for all cases. So these results pointed that Neuro-Fuzzy controller is 
more robust than PID controller. 
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PID controller for SG 8.1KVA Neuro-Fuzzy controller for SG 
8.1KVA 

Rise time 
(sec) 

Maximum 
Over shoot 

Settling time 
(sec) at error 
0.03 

Rise time 
(sec) 

Maximum 
Over shoot 

Settling time 
(sec) at error 
0.03 

SG of 
8.1KVA 

0.05 0.04 0.08 0.076 0.039 0.079 

SG of 
31.3KVA 

0.08 0.11 0.33 0.515 0.033 0.125 

SG of 
250KVA 

0.35 0.14 1.71 0.516 0.003 0.516 

SG of 
910KVA 

0.74 0.12 3.75 1.045 0.002 1.045 

SG of 
2MVA 

0.86 0.25 3.47 1.168 0.004 1.168 

SG of 
187MVA 

2.22 0.39 9.55 3.685 0.002 3.685 

Table (2): Transient responses parameters for different SG model with controller  
for SG 8.1KVA 

 
 

Figure (17): Time responses for SG of 2MVA 
with different Neuro-Fuzzy controllers 

Figure (18): Time responses for SG of 187MVA 
with different Neuro-Fuzzy controllers 
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SG model PID controller for SG 31.3KVA Neuro-Fuzzy controller for SG 
31.3KVA 

Rise 
time 
(sec) 

Maximum 
Over 
shoot 

Settling time 
(sec)  at error 
0.03 

Rise 
time 
(sec) 

Maximum 
Over shoot 

Settling time 
(sec)  at error 
0.03 

SG of 
8.1KVA 

0.05 0.04 0.195 0.075 0.039 0.085 

SG of 
31.3KVA 

0.08 0.03 0.082 0.115 0.033 0.125 

SG of 
250KVA 

0.36 0.13 1.521 0.515 0.003 0.515 

SG of 
910KVA 

0.74 0.12 3.759 1.045 0.001 1.045 

SG of 
2MVA 

0.87 0.25 3.511 1.165 0.004 1.165 

SG of 
187MVA 

2.22 0.39 7.475 3.686 0.002 3.686 

SG 
model 

PID controller for SG 250KVA Neuro-Fuzzy controller for SG 250KVA 
Rise time 
(sec) 

Maximum 
Over shoot 

Settling time 
(sec)  at error 
0.03 

Rise time 
(sec) 

Maximum 
Over shoot 

Settling time 
(sec)  at 
error 0.03 

SG of 
8.1KVA 

0.06 0.06 1.12 0.076 0.039 0.087 

SG of 
31.3KVA 

0.09 0.05 0.81 0.115 0.033 0.125 

SG of 
250KVA 

0.36 0.12 0.52 0.516 0.002 0.516 

SG of 
910KVA 

0.74 0.11 2.65 1.045 0.001 1.045 

SG of 
2MVA 

0.87 0.22 3.71 1.168 0.004 1.168 

SG of 
187MVA 

2.23 0.38 6.86 3.685 0.001 3.685 

Table (3): Transient responses parameters for different SG model with controller for SG 
31.3KVA 

 
 

Table (4): Transient responses parameters for different SG model with controller for SG 
250KVA 
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   Figures (19 and 20) shows the time response for SG 187MVA for different loads in 
MVA with AVR using PID and Neuro-Fuzzy controller designed for SG 8.1KVA 
respectively. Which illustrate that big maximum over shoot (91.9%) and large settling 
time (21.45 second) for PID controller with load 1MVA compared with Neuro-Fuzzy 
controller which has maximum over shoot (0.4%) and settling time (2.845 second). The 
time responses for both controllers are still stable responses. Also these results pointed 
that Neuro-Fuzzy controller is more robust than PID controller. 
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 Load =  1  M
Load =  45 M
Load =  90 M
Load = 135M
Load = 180M

SG model PID controller for SG 2MVA Neuro -Fuzzy controller for SG 
2MVA 

Rise time 
(sec) 

Maximum 
Over shoot 

Settling 
time(sec) 
at error 
0.03 

Rise 
time 
(sec) 

Maximum 
Over 
shoot 

Settling 
time(sec) 
at 
error 0.03 

SG of 
8.1KVA 

0.05 0.06 4.41 0.075 0.039 0.085 

SG of 
31.3KVA 

0.083 0.04 3.62 0.115 0.033 0.125 

SG of 
250KVA 

0.38 0.03 5.82 0.115 0.003 0.115 

SG of 
910KVA 

0.81 0.008 3.63 1.045 0.002 1.045 

SG of 
2MVA 

0.87 0.01 0.87 1.168 0.004 1.168 

SG of 
187MVA 

2.23 0.12 10.95 3.682 0.002 3.682 

Table (5): Transient responses parameters for different SG model with controller for SG 
2MVA 

 

Figure (19): Time responses for SG of 187MVA using PID controller designed for SG 
8.1KVA and different load in MVA 
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Table (6) shows the numerical values of transient response for Figures (19and 20) and 
these values show that Neuro-Fuzzy controller has better response and more robust than 
PID controller. 
 
 

 
Conclusions 
    In this paper two type of AVR are designed for synchronous generator, one of them 
is based on optimal PID controller (tuned by PSO) and the other is based on Neuro-
Fuzzy controller. The terminal voltage responses of PID and Neuro-Fuzzy controller 
are stable for wide range of synchronous generators (from 8.1KVA to 187MVA), and 
both controllers are robust. The settling time and maximum over shoot for different 
Neuro-Fuzzy controllers are less than PID controllers which are designed for same 
synchronous generators. The responses for same SG model and different Neuro_ Fuzzy 
controllers have approximately same maximum over shoot, while PID controllers are 
not same. The response of SG model with different load for Neuro-Fuzzy controller is 
better than PID controller. The margins of robustness for Neuro-Fuzzy controller are 
greater than PID controller. Neuro-Fuzzy controller can be used as a robust controller 
for the applications of accurate transient and steady state response, while PID controller 
is used as a robust controller only for accurate steady state response.  
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 Load =  1  M
Load =  45 M
Load =  90 M
Load = 135M
Load = 180M

Controller type 

Loads  PID controller for SG 8.1KVA Neuro- Fuzzy controller for SG 
8.1KVA 

Rise 
time 
(sec) 

Maximum 
Over shoot 

Settling 
time (sec) at 
error 0.03 

Rise 
time(sec) 

Maximu
m Over 
shoot 

Settling 
time(sec) at 
error 0.03 

1 MVA 1.916 0.919 21.45 2.845 0.004 2.845 
45 MVA 1.952 0.832 18.11 2.918 0.003 2.918 
90 MVA 2.005 0.716 14.66 3.058 0.003 3.058 
135MVA 2.951 0.568 11.64 3.292 0.002 3.292 
180MVA 2.225 0.387 9.61 3.685 0.002 3.685 

Table (6): Transient responses parameters for SG 187MVA with different  
controllersand loads 

 

Figure (20): Time responses for SG of 187MVA using Neuro-controller designed for SG 
8.1KVA and different load in MVA 

 

15 

 



Eng. &Tech.Journal, Vol. 33,Part (A), No.3, 2015      Study the Robustness of Automatic Voltage          
                                                                                         Regulator for Synchronous GeneratorBased        

                                                                                  on Neuro-Fuzzy Network 
 

REFERENCES 
[1] J.Machowski, J.W.Bialek, S.Robak, J.R.Bumby, " Excitation control system for use 
with synchronous generator", IEE Proc.-Gener. Trancm. Distrib., Vol. 145, No. 5, 
September 1998 
[2] Abbase Hussain Issa,'' Robust PID controller Design for a DC Motor Speed Control 
Based on ITAE Performance Index Method'', 2nd  Scientific Conference of Electrical 
Engineering University of Technology Department of Electrical and Electronic 
Engineering 4-5 April 2011  . 
[3] Abdulrahim T. Humod and A. S. Abdulsada, "Neural Network-based Robust 
Automatic Voltage Regulator (AVR) of Synchronous Generator ", Eng &Tech. journal, 
Vol.29 No.7, 2011. 
[4] Kiyong Kim, and Richard C. Schaefer,"Tuning a PID Controller for a Digital 
Excitation Control System", Ieee Transections on Industry Applications, Vol. 41, No. 2, 
March/April 2005  
[5] Abdelelah Kh. Mahmmod, "Design of Antiwindup AVR for Synchronous Generator 
Using Matlab Simulation",Al-Rafidain Engineering Vol.17 No.3 June 2009 
[6] Anant oonsivilai and Padejpao-La-Or, "Optimum PID Controller tuning for AVR 
system using Adaptive Tabu Search ", 12th Wseas International Conference on 
computers, Heraklion, Greece, July 23-25,2008. 
 [7] Abdulrahim Thiab Humod, "Tuning Model Reference Adaptive Controller for 
AVR of Synchronous Generator", IJCCCE, Vol.11. No.2, 2011 
[8] Adil H. Ahmad, & Lina J. Rashad, "Excitation and Governing Control of a Power 
Generation Based Intelligent System", Eng&Tech. journal, Vol.28, No.5, 2010.  
[9] Abdulrahim T. Humod and W. N. Abed, "Fuzzy-Swarm Controller for Automatic 
Voltage Regulator of Synchronous Generator", Eng &Tech. journal, Vol.30 No.3, 2012.  
[10] Abdulrahim Thiab Humod and Abdullah sahib abdulsada, "Study of AVR Control 
of Synchronous Generator Based on Intelligent Technique", 2nd Scientific Conference 
of Electrical Engineering University of Technology, Department of  Electrical and 
Electronic Engineering 4-5 April 2011     
[11] Vivek Kumar Bhatt, Dr. Sandeep Bhongade, "Design Of PID Controller In 
Automatic Voltage Regulator (AVR) System Using PSO Technique", International 
Journal of Engineering Research and Applications (IJERA) Vol. 3, Issue 4, Jul-Aug 
2013 
[12] Abdulrahim Thiab Humod, "Study the Robustness of Automatic Voltage Regulator 
for Synchronous Generator Based on Neural Network",  IJCCCE Vol.13, No.3, 2013 
[13] Z. Spoljaric, K. Miklosevic and Z. Valter, "Analysis of Synchronous Motor Drive 
using SimPowerSystems ", DAAAM International, Vienna, Austria, pp. 1133-1135, 
[Proceedings of 20-th International DAAAM Symposium, Vienna, Austria], October, 
2009. 
[14] Qinghai. Bai, "Analysis of Particle Swarm Optimization Algorithm," Computer 
and Information Science, Vol. 3, No. 1, Pebruari, 2010.       
[15] Hong-jun Wang and Hui Zhao," Design of Fuzzy-Neuro Controller Applicated to a 
Synchronous Generator Excitation Control System", International Conference on 
Measuring Technology and Mechatronics Automation, 2010. 
 [16] Robert Full´er," Introduction to Neuro-Fuzzy Systems, Advances in Soft 
Computing Series", Springer-Verlag, Berlin, 1999.  
 
 

16 

 

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Hong-jun%20Wang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Hui%20Zhao


Eng. &Tech.Journal, Vol. 33,Part (A), No.3, 2015      Study the Robustness of Automatic Voltage          
                                                                                         Regulator for Synchronous GeneratorBased        

                                                                                  on Neuro-Fuzzy Network 
 

APPENDIX (A) 
    The table below shows the parameters for different  SG model  taken from 
MATLAB/SIMULINK  toolbox  version 7.11.0.584 (R2010b) which used in our 
simulation models. 
 
 
 

Synchronous generator model 
 SG of 

8.1KVA 
SG of 
31.1KVA 

SG of 
250KVA 

SG of 
910KVA 

SG of 
2MVA 

SG of 
187MVA 

Rated Power ( KVA) 8.1 31.3 250 910 2000 178000 
Rated voltage       
V(L-L) 

400 400 400 400 400 13800 

Rated frequency     
(HZ) 

50 50 50 50 50 60 

stator resistance      
(pu) 

.08201 .04186 .02594 .01706 0.0095 0.00285 

stator leakage  
inductance  (pu) 

.0721 .0631 .09 .08 0.05 .114 

mutual  inductance 
(pu) 

1.728 1.497 2.75 2.62 2.06 1.19 

quadrature mutual  
inductance (pu) 

.823 .707 2.35 1.52 1.51 .36 

field resistance    (pu) .06117 .02306 .00778 .004686 .001971 .000579 
field leakage  
inductance (pu) 

.1801 .1381 0.3197 .4517 0.3418 .114 

damper resistance   
(pu) 

.1591 .1118 .2922 .2377 0.2013 .0117 

damper leakage  
inductance  (pu) 

.1166 .1858 1.982 2.192 2.139 .182 

damper resistance  
(pu) 

.2416 .09745 .06563 .02186 0.02682 .0197 

damper leakage 
inductance (pu) 

.1615 .1258 .305 .09566 0.2044 0.384 

Inertia coefficient 
(sec) 

0.1406 .08671 .1753 .2717 0.3072 3.7 

Friction factor (pu) .02742 .02365 .o1579 .01356 .00987 0 
Pole pair 2 2 2 2 2 20 
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