Counting Fuzzy Subgroups of $\bigotimes_{i=1}^{n} \mathbb{Z}_{2}$ by Lattice Subgroups

Afrah Mohammed Ibraheem

Department of Mathematics, Al-Mustansiriyah University, College of Education/Baghdad Email:afrah.diyar@yahoo.com

Received on: 26 /9/2012 & Accepted on: 26/11/2013

ABSTRACT

In this paper, we compute the number of fuzzy subgroups of an abelian group $\bigotimes_{i=1}^{n} \mathbb{Z}_{2}$ when n=1, 2, 3 and 4 by using the subgroups lattice of it .Also we construct

the diagram of subgroups lattice of $\bigotimes_{i=1}^{n} Z_2$, n=1, 2, 3 and 4.

حساب الزمر الجزئية الضبابية للزمرة
$$\mathop{\otimes}\limits_{i=1}^{n} \, {\sf Z}_{2}$$
 بواسطة زمرها الجزئية المشبكة

الخلاصة

في هذا البحث قمنا بحساب عدد الزمر الجزئية الضبابية للزمرة الابدالية
$$\sum_{i=1}^{n} Z_{2}$$
 عندما n=1,2,3,4 باستخدام زمر ها الجزئية المشبكة . كما قمنا بأنشاء مخطط الزمر الجزئية المشبكة للزمرة $\sum_{i=1}^{n} Z_{2}$ عندما Z_{2}

INTRODUCTION

The study of fuzzy algebraic structures was started with the introduction of the concept of fuzzy subgroups by Rosenfeld in 1971 [5]. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group {e}. Some authors have used the equivalence relation of fuzzy sets to study the equivalence of fuzzy subgroups ([1], [2], [3], and [9]). All of them have treated the particular case of finite Abelian group. It is interesting to count the number of fuzzy subgroups of nonabelian groups and construct them. Laszlo in [1] has studied the construction of fuzzy subgroup of a group of order one to six. Sulaiman and Abd Ghafur in [6] have counted the number of fuzzy subgroups of nonabelian symmetric groups S_2 , S_3 and alternating group A_4 . In the other paper, they [8] have counted the number of fuzzy subgroups of group defined by a presentation. In this paper we compute the number

of fuzzy subgroups of an abelian group $\bigotimes_{i=1}^{n} \mathbb{Z}_2$, for all n=1, 2, 3 and 4 by using the subgroups lattice, and we construct the diagram of subgroups lattice of it.

https://doi.org/10.30684/etj.32.2B.17

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

360

BASIC DEFINITIONS AND RESULTS OF FUZZY SUBGROUPS

We recall some definitions and results that will be used later.

Definition 2.1.[4] A partial ordered on a nonempty set P is a binary relation \leq on P that is reflexive, antisymmetric and transitive. The pair $\langle P, \leq \rangle$ is called a partially ordered set or poset. Poset $\langle P, \leq \rangle$ is totally ordered if every x, y \in P are comparable, that is $x \leq y$ or $y \leq x$. A nonempty subset S of P is a chain in P if S is totally ordered by \leq .

Definition 2.2.[4] Let $\langle P, \leq \rangle$ be a poset and let $S \subseteq P$. An upper bound for S is an element $x \in P$ for which $s \leq x$, $\forall s \in S$. The least upper bound of S is called the supremum or join of S. A lower bound for S is an element $x \in P$ for which $x \leq s$, $\forall s \in S$. The greatest lower bound of S is called the infimum or meet of S. Poset $\langle P, \leq \rangle$ is called a lattice if every pair x, y elements of P has a supremum and an infimum.

Note that the set of all of subgroups G under the "subgroup" relation is a lattice. This lattice is called the lattice subgroup of G.

Definition 2.3. [5] Let X is a nonempty set. A fuzzy set of X is a function μ from X into [0, 1].

Definition 2.4. [5] A fuzzy subset μ of a group G is called a fuzzy subgroup of G if:

i. $\mu(xy) \ge \min \{\mu(x), \mu(y)\}, \forall x, y \in G \text{ and }$

ii. $\mu(x^{-1}) = \mu(x), \forall x \in G.$

Example. Let $G = S_3$ be the symmetric group of degree 3. Define g: $G \rightarrow [0, 1]$ as follows:

$$g(x) = \begin{cases} 1 & \text{if } x = e \\ 0.5 & \text{if } x = (123), (132) \\ 0 & \text{otherwise} \end{cases}$$

where e is the identity element of S_3 . It can be easily verified that g is a fuzzy subgroup of S3.

Theorem 2.5.[5] Let e denote the identity element of G. If μ is a fuzzy subgroup of G, then $\mu(e) \ge \mu(x), \forall x \in G$.

Theorem 2.6.[7] Function $\mu : G \rightarrow [0, 1]$ is a fuzzy subgroup of G if there is a chain

 $P_1 < P_2 < ... < P_n = G$ in subgroups lattice of G such that μ can be written as

$$\mu(x) = \begin{cases} \theta_1, x \in P_1 \\ \theta_2, x \in P_2 \setminus P_1 \\ \vdots \\ \theta_n, x \in P_n \setminus P_{n-1} \end{cases}$$

Where θ_i is element of [0, 1] and $\theta_i > \theta_j$ if i > j.

Example. Consider the group $G = Z_{12}$. Define function μ as follows:

$$\mu(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} \in \{0, 2, 4, 6, 8, 10\} \\ 1/2, & \mathbf{x} \in \{1, 3, 5, 7, 9, 11\} \end{cases}$$

Note that $P_1(\mu) = \{0, 2, 4, 6, 8, 10\}$ and $P_2(\mu) = Z_{12}$ both are subgroup of Z_{12} . According to Theorem 2.6, μ is a fuzzy subgroup of Z_{12} . **Definition 2.7.** [7] Let μ , λ be fuzzy subgroups of G of the form

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, \mathbf{x} \in \mathbf{P}_1 \\ \theta_2, \mathbf{x} \in \mathbf{P}_2 \setminus \mathbf{P}_1 \\ \vdots \\ \theta_n, \mathbf{x} \in \mathbf{P}_n \setminus \mathbf{P}_{n-1} \end{cases} \qquad \lambda(\mathbf{x}) = \begin{cases} \delta_1 & \mathbf{x} \in \mathbf{M}_1 \\ \delta_2 & \mathbf{x} \in \mathbf{M}_2 \setminus \mathbf{M}_1 \\ \vdots \\ & \delta_m & \mathbf{x} \in \mathbf{M}_m \end{pmatrix}$$

 M_{m-1}

Then we say that μ and λ are equivalent and write $\mu \sim \lambda$ if (1) m = n and (2) Dia Mir $\forall \mu \in \{1, 2, \dots\}$

(2) $\operatorname{Pi} = \operatorname{Mi}, \forall i \in \{1, 2, m\}.$

Two fuzzy subgroups of G are said to be different if they are not equivalent. Lemma 2.8. [6] The number of fuzzy subgroups of G is equal to the number of chain on the lattice subgroups of G.

THE NUMBER OF FUZZY SUBGROUPS OF $\bigotimes_{i=1}^{n} Z_2$ IF N=1, 2, 3 AND 4

In this section, we give a guiding principle to determine the number of fuzzy subgroups of $\bigotimes_{i=1}^{n} Z_{2}$ when n=1, 2, 3 and 4. We denote the number of fuzzy

subgroups of group $\bigotimes_{i=1}^{n} Z_2$ by o (F_G) and the identity element by 1.

The Number of Fuzzy Subgroups of Z2

Let $Z_2 = \{1, x\}$. The two subgroups of Z2 are I= $\{1\}$ and Z_2 . Therefore, we can construct a fuzzy subgroup μ of Z_2 with length of μ equal to 1 or 2. The fuzzy subgroup of Z2 with length 1 is $\mu(x) = \theta_1$, $x \in Z_2$. While the fuzzy subgroup of Z_2 with length 2 is

$$\mu(\mathbf{x}) = \begin{cases} \theta_1 & , \mathbf{x} \in \{1\} \\ \theta_2 & , \mathbf{x} \in \mathbb{Z}_2 \setminus \{1\}, \text{ where } \theta_1 \text{ and } \theta_2 \in [0, 1] \end{cases}$$

Thus, $o(F_{Z2}) = 2$.

Z_2	
Ι	

Eng. & Tech. Journal , Vol.32,Part (B), No.2, 2014

Figure (1) Diagram of poset subgroups of Z₂.

The Number of Fuzzy Subgroups of $\mathbf{Z}_2\times\mathbf{Z}_2$

Let $Z_2 \times Z_2 = \{(1,1), (x,1), (1,y), (x,y)\}$. There are five subgroups of $Z_2 \times Z_2$, namely

 $Z_2 \times Z_2$, $I = \{ (1,1) \}$, $H_1 = \{ (1,1), (x,1) \}$, $H_2 = \{ (1,1), (1,y) \}$ and $H_3 = \{ (1,1), (x,y) \}$.

Let S(G) denotes the set of all subgroups of group G. The diagram of poset < S(Z₂ \times Z₂),< >is as follows:

Figure (2) Diagram of poset subgroups of $Z_2 \times Z_2$.

We will compute the number of fuzzy subgroups of $Z_2 \times Z_2$. Let μ be a fuzzy subgroup of $Z_2 \times Z_2$. We will identify μ according to $P_1(\mu)$. Every subgroup of $Z_2 \times Z_2$ can be chosen to be $P_1(\mu)$.

If $P_1(\mu) = Z_2 \times Z_2$, we only have one fuzzy subgroup of $Z_2 \times Z_2$, that is

$$\mu_1(\mathbf{x}) = \theta_1, \ \forall \mathbf{x} \in \mathbb{Z}_2 \times \mathbb{Z}_2.$$

If $P_1(\mu) = H_1$, then the only option we have is $Z_2 \times Z_2 = P_2(\mu)$. Therefore we only have one fuzzy subgroup of $Z_2 \times Z_2$ namely

$$\mu_{2}(x) = \begin{cases} \theta_{1} , x \in H_{1} \\ \theta_{2} , x \in Z_{2} \times Z_{2} \setminus H_{1}. \end{cases}$$

Similarly, we have one fuzzy subgroups for $P_1(\mu) = H_2$, $P_1(\mu) = H_3$, namely

$$\mu_3(x) = \begin{cases} \theta_1, \ x \in H_2 \\ \theta_2, \ x \in Z_2 \times Z_2 \setminus H_2 \end{cases}$$

$$\mu_4(x) = \begin{cases} \theta_1, \ x \in H_3 \\ \theta_2, \ x \in Z_2 \times Z_2 \setminus H_2 \\ H_3 \end{cases}$$

Respectively.

Finally if $P_1(\mu)= I$, then by observing the poset of $Z_2 \times Z_2$ see Figure (2) we may construct fuzzy subgroups of $Z_2 \times Z_2$ of length 2,

If the length is 2, then $P_2(\mu) = Z_2 \times Z_2$ and we can choose one out of three to be $P_2(\mu)$, namely H_1 , H_2 , and H_3 .

Thus, there are four fuzzy subgroups that can be constructed with $P_1(\mu) = I$. Thus the total number of fuzzy subgroups of $Z_2 \times Z_2$ is eight.

The Number of Fuzzy Subgroups of $\bigotimes_{i=1}^{3} Z_2 (\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2)$

Let $Z_2 \times Z_2 \times Z_2 = \{(1,1,1), (x,1,1), (1,y,1), (1,1,z), (x,1,z), (x,y,1), (1,y,z), (x,y,z) \}$. There are sixteen subgroups of $Z_2 \times Z_2 \times Z_2$, namely $Z_2 \times Z_2 \times Z_2$, $I = \{(1,1,1)\}$, $K_1 = \{(1,1,1), (x,1,1)\}$, $K_2 = \{(1,1,1), (1,y,1)\}$, $K_3 = \{(1,1,1), (1,1,z)\}$, $K_4 = \{(1,1,1), (x,y,1)\}$, $K_5 = \{(1,1,1), (x,1,z)\}$, $K_6 = \{(1,1,1), (1,y,z)\}$, $K_7 = \{(1,1,1), (x,y,z)\}$, $H_1 = \{(1,1,1), (x,1,1), (1,y,1), (x,y,1)\}$, H_2

 $=\{(1,1,1), (x,1,1), (1,1,z), (x,1,z)\}, H_3=\{(1,1,1), (1,1,z), (1,y,1), (1,y,z)\}$

,H₄={(1,1,1), (x,y,1), (1,1,z), (x,y,z) } ,H₅={(1,1,1), (x,1,z), (1,y,1), (x,y,z) } ,H₆={(1,1,1), (1,y,z), (x,1,1), (x,y,z) } and

 $H_7 = \{(1,1,1), (x,y,1), (1,y,z), (x,1,z)\}$.

The diagram of poset subgroups $< S(\bigotimes_{i=1}^{3} Z_2), <>$ is as follows:

Figure (3) Diagram of poset subgroups of $\bigotimes_{i=1}^{3} Z_{2}$.

We will count the number of the fuzzy subgroups of $\bigotimes_{i=1}^{3} Z_{2}$ by observing that diagram and using Lemma 2.8. We can see that the maximal chain on that lattice consists of four subgroups of $\bigotimes_{i=1}^{3} Z_{2}$. Therefore, the fuzzy subgroup μ of $\bigotimes_{i=1}^{3} Z_{2}$ has length 1,2,3 or 4.

ŀ

Let μ be a fuzzy subgroup of $\bigotimes_{i=1}^{3} Z_{2}$. We will identify μ according to $P_{1}(\mu)$. Every subgroup of $\bigotimes_{i=1}^{3} Z_{2}$ can be chosen to be $P_{1}(\mu)$. If $P_{1}(\mu) = \bigotimes_{i=1}^{3} Z_{2}$, we only have one fuzzy subgroup of $\bigotimes_{i=1}^{3} Z_{2}$, that is

$$\mu(\mathbf{x}) = \theta_1$$
, $\forall \mathbf{x} \in \bigotimes_{i=1}^3 Z_2$.

If $P_1(\mu) = H_1$, then the only option we have is $\bigotimes_{i=1}^{3} Z_2 = P_2(\mu)$. Therefore we only have one fuzzy subgroup of $\bigotimes_{i=1}^{3} Z_2$ namely

$$\mathbf{u}(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in \mathbf{H}_1 \\ \theta_2, & \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \setminus \mathbf{H}_1 \end{cases}$$

Similarly, we have one fuzzy subgroups for $P_1(\mu) = H_2$, $P_1(\mu) = H_3$, $P_1(\mu) = H_4$, $P_1(\mu) = H_5$, $P_1(\mu) = H_6$ and $P_1(\mu) = H_7$.

If $P_1(\mu) = K_1$, then we have four chains, those are $K_1 < \bigotimes_{i=1}^{3} Z_2$, $K_1 < H_1 < \bigotimes_{i=1}^{3} Z_2$, $K_1 < H_2 < \bigotimes_{i=1}^{3} Z_2$ and $K_1 < H_6 < \bigotimes_{i=1}^{3} Z_2$. Therefore, we get four fuzzy subgroups of $\bigotimes_{i=1}^{3} Z_2$ with $P_1(\mu) = K_1$, those are

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, & \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \setminus \mathbf{K}_1 \\ \theta_3, & \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \rangle \end{cases} \qquad \mu(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, & \mathbf{x} \in \mathbf{H}_1 \setminus \mathbf{K}_1 \\ \theta_3, & \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \rangle \end{cases}$$

 H_1

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, \quad \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, \quad \mathbf{x} \in \mathbf{H}_2 \setminus \mathbf{K}_1 \\ \theta_3, \quad \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \setminus \mathbf{H}_2 \end{cases} \quad \text{and} \quad \begin{cases} \theta_1, \quad \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, \quad \mathbf{x} \in \mathbf{H}_6 \setminus \mathbf{K}_1 \\ \theta_3, \quad \mathbf{x} \in \bigotimes_{i=1}^3 Z_2 \setminus \mathbf{H}_6 \end{cases}$$

Similarly, we have four fuzzy subgroups for $P_1(\mu) = K_2$, $P_1(\mu) = K_3$, $P_1(\mu) = K_4$, $P_1(\mu) = K_5$, $P_1(\mu) = K_6$ and $P_1(\mu) = K_7$.

Finally if P₁ (μ) = I, we have 36 subgroups fuzzy. Thus, the total number of fuzzy subgroups of $\bigotimes_{i=1}^{3} Z_2$ is (1 + 28+7 +36 = 72).

The Number of Fuzzy Subgroups of $\bigotimes_{i=1}^{4} Z_2(Z_2 \times Z_2 \times Z_2 \times Z_2)$

Let $Z_2 \times Z_2 \times Z_2 \times Z_2 = \{(1,1,1,1), (x,1,1,1), (1,y,1,1), (1,1,z,1), (1,1,1,h), (x,1,z,1), (x,y,1,1), (1,y,z,1), (1,1,z,h), (1,y,1,h), (x,1,1,h), (x,y,z,1), (1,y,z,h), (x,1,z,h), (x,y,1,h), (x,y,z,h) \}.$

There are 48 subgroups of $\bigotimes_{i=1}^{4} Z_2$, namely $Z_2 \times Z_2 \times Z_2 \times Z_2$, $I = \{(1, 1, 1, 1)\},$

 $H_1 = \{(1,1,1,1), (x,1,1,1)\}, H_2 = \{(1,1,1,1), (1,y,1,1)\}, H_3 = \{(1,1,1,1), (1,1,z,1)\}, H_4 = \{(1,1,1,1), (1,1,z,1)\}, H_4$ $H_4 = \{(1,1,1,1), (1,1,1,h)\}, H_5 = \{(1,1,1,1), (x,y,1,1)\}, H_6 = \{(1,1,1,1), (x,1,z,1)\},$ $H_7 = \{(1,1,1,1), (1,y,1,h)\}, H_8 = \{(1,1,1,1), (1,y,z,1)\}, H_9 = \{(1,1,1,1), (1,1,z,h)\},$ $H_{10} = \{(1,1,1,1),(x,1,1,h)\}, H_{11} = \{(1,1,1,1),(x,y,z,1)\}, H_{12} = \{(1,1,1,1),(x,y,1,h)\}, H_{13} = \{(1,1,1,1),(x,y,1,h$ $\{(1,1,1,1),(x,1,z,h)\},H_{14}=\{(1,1,1,1),(1,y,z,h)\},H_{15}=\{(1,1,1,1),(x,y,z,h)\},K_1=\{(1,1,1),(x,y,z,$,1), (x,1,1,1), (1,y,1,1), (x,y,1,1), $K_2 = \{(1,1,1,1), (x,1,1,1), (1,1,z,1), (x,1,z,1)\}$, $K_3 = \{(1,1,1,1), (x,1,1,1), (1,1,1,h), (x,1,1,h)\}, K_4 = \{(1,1,1,1), (1,1,1,h), (1,1,z,1), (1,1,$ (1,1,z,h) }, K₅={(1,1,1,1), (1,y,1,1), (1,1,1,h), (1,y,1,h)}, K₆={(1,1,1,1), (1,y,1,1), (1,1,z,1), (1,y,z,1) }, $K_7 = \{(1,1,1,1), (x,y,z,1), (1,y,z,1), (x,1,1,1)\}, K_8 = \{(1,1,1,1), (x,y,z,1), (1,y,z,1), (x,1,1,1)\}$ $(x,y,z,1), (x,1,z,1), (1,y,1,1), K_9 = \{(1,1,1,1), (x,y,z,1), (x,y,1,1), (1,1,z,1)\},\$ $K_{10} = \{(1,1,1,1), (x,y,1,h), (x,y,1,1), (1,1,1,h)\}, K_{11} = \{(1,1,1,1), (x,y,1,h), (1,y,1,1), (1,y,1), (1,y,$ (x,1,1,h), $K_{12}=\{(1,1,1,1), (x,y,1,h), (x,1,1,1), (1,y,1,h)\}$, $K_{13}=\{(1,1,1,1), (x,1,z,h), (x,1,z,h),$ (x,1,1,1), (1,1,z,h), $K_{14}=\{(1,1,1,1), (x,1,z,h), (1,1,z,1), (x,1,1,h)\}$, $K_{15}=\{(1,1,1,1), (x,1,z,h), (x,1,z,h), (x,1,z,h)\}$ $(x,1,z,h), (1,1,1,h), (x,1,z,1), K_{16} = \{(1,1,1,1), (1,y,z,h), (1,y,1,1), (1,1,z,h)\},\$ $K_{17} = \{(1,1,1,1), (1,y,z,h), (1,1,z,1), (1,y,1,h)\}, K_{18} = \{(1,1,1,1), (1,y,z,h), (1,1,1,h), (1,y,z,h), (1,1,1,h)\}$ (1,y,z,1), $K_{19}=\{(1,1,1,1), (x,y,z,h), (x,y,1,1), (1,1,z,h)\}$, $K_{20}=\{(1,1,1,1), (1,1,z,h)\}$ (x,y,z,h), (1,y,z,1), (x,1,1,h), $K_{21} = \{(1,1,1,1), (x,y,z,h), (x,1,z,1), (1,y,1,h)\}$, $K_{22} = \{(1,1,1,1), (x,y,z,h), (x,1,1,1), (1,y,z,h)\}, K_{23} = \{(1,1,1,1), (x,y,z,h), (1,y,1,1), (x,y,z,h), (1,y,1,1)\}$ (x,1,z,h)}, $K_{24} = \{(1,1,1,1), (x,y,z,h), (1,1,z,1), (x,y,1,h)\}$, $K_{25} = \{(1,1,1,1), (x,y,z,h), (x,y,$

(1,1,1,h), (x,y,z,1), $G_1 = \{(1,1,1,1), (x,y,z,1), (x,1,1,1), (1,y,1,1), (1,1,z,1), (1,y,z,1), (x,1,z,1), (x,y,1,1)\},$

 $G_2 = \{(1,1,1,1), (x,y,1,h), (x,1,1,1), (1,y,1,1), (1,1,1,h), (1,y,1,h), (x,1,1,h), (x,y,1,1)\}, (x,y,1,1)\}, (x,y,1,1), (x,y,1), (x,y,1$

 $G_3 = \{(1,1,1,1), (x,1,z,h), (x,1,1,1), (1,1,1,h), (1,1,z,1), (1,1,z,h), (x,1,1,h), (x,1,z,1)\},\$

 $G_4 = \{(1,1,1,1), (1,y,z,h), (1, y,1,1), (1,1, z,1), (1,1,1,h), (1,y,z,1), (1,y,1,h), (1,1,z,h)\},\$

 $G_5 = \{(1,1,1,1), (x,y,z,h), (x,y,z,1), (1,1,1,h), (1,y,z,h), (x,1,1,1), (x,1,1,h), (1,y,z,1)\}, and$

G₆={(1,1,1,1), (x,y,z,h), (x,y,1,h), (1,1,z,1), (x,1,z,h), (1,y,1,1), (1,y,z,1), (x,1,1,h)} The diagram of poset subgroups $< S(\bigotimes_{i=1}^{4} Z_{2}), <>$ is as follows: Eng. & Tech. Journal , Vol.32,Part (B), No.2, 2014

Figure (4) Diagram of poset subgroups of $(Z_2 \times Z_2 \times Z_2 \times Z_2)$.

We will count the number of the fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ by observing its diagram and using Lemma 2.8. We can see that the maximal chain on that lattice consists of five subgroups of $\bigotimes_{i=1}^{4} Z_2$. Therefore, the fuzzy subgroup μ of $\bigotimes_{i=1}^{4} Z_2$ has length 1,2,3,4 or 5.

Let μ be a fuzzy subgroup of $\bigotimes_{i=1}^{4} Z_2$. We will identify μ according to $P_1(\mu)$. Every subgroup of $\bigotimes_{i=1}^{4} Z_2$ can be chosen to be $P_1(\mu)$. If $P_1(\mu) = \bigotimes_{i=1}^{4} Z_2$, we only have one fuzzy subgroup of $\bigotimes_{i=1}^{4} Z_2$, that is

$$\mu(\mathbf{x}) = \theta_1$$
, $\forall \mathbf{x} \in \bigotimes_{i=1}^4 Z_2$.

If $P_1(\mu) = G_1$, then the only option we have is $\bigotimes_{i=1}^4 Z_2 = P_2(\mu)$. Therefore we only have one fuzzy subgroup of $\bigotimes_{i=1}^4 Z_2$ namely Eng. & Tech. Journal, Vol.32,Part (B), No.2, 2014

and

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in G_1 \\ \theta_2, & \mathbf{x} \in \bigotimes_{i=1}^4 Z_2 \setminus G_1 \end{cases}$$

Similarly, we have one fuzzy subgroups for $P_1(\mu) = G_2$, $P_1(\mu) = G_3$, $P_1(\mu) = G_4$, $P_1(\mu) = G_5$, $P_1(\mu) = G_6$, $P_1(\mu) = H_{19}$ and $P_1(\mu) = H_{21}$.

If $P_1(\mu) = K_1$, then we have three chains, those are $K_1 < \bigotimes_{i=1}^{4} Z_2$, $K_1 < G_1 < \bigotimes_{i=1}^{4} Z_2$ and $K_1 < G_2 < \bigotimes_{i=1}^{4} Z_2$. Therefore, we get three fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ with $P_1(\mu) = K_1$, those are

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, & \mathbf{x} \in \bigotimes_{i=1}^4 Z_2 \setminus \mathbf{K}_1 \\ \theta_3, & \mathbf{x} \in \bigotimes_{i=1}^4 Z_2 \rangle \end{cases} \quad \mu(\mathbf{x}) = \begin{cases} \theta_1, & \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, & \mathbf{x} \in \mathbf{G}_1 \setminus \mathbf{K}_1 \\ \theta_3, & \mathbf{x} \in \bigotimes_{i=1}^4 Z_2 \rangle \end{cases}$$

 G_1

$$\mu(\mathbf{x}) = \begin{cases} \theta_1, \quad \mathbf{x} \in \mathbf{K}_1 \\ \theta_2, \quad \mathbf{x} \in \mathbf{G}_2 \setminus \mathbf{K}_1 \\ \theta_3, \quad \mathbf{x} \in \bigotimes_{i=1}^4 \mathbb{Z}_2 \setminus \mathbf{G}_2 \end{cases}$$

Similarly, we have three fuzzy subgroups for $P_1(\mu) = K_2$, $P_1(\mu) = K_4$, $P_1(\mu) = K_5$, $P_1(\mu) = K_7$, $P_1(\mu) = K_{11}$, $P_1(\mu) = K_{14}$, $P_1(\mu) = K_{18}$ and $P_1(\mu) = K_{20}$. If $P_1(\mu) = K_3$, then we have four chains, those are $K_3 < \bigotimes_{i=1}^{4} Z_2$, $K_3 < G_2 < \bigotimes_{i=1}^{4} Z_2$, $K_3 < G_3 < \bigotimes_{i=1}^{4} Z_2$ and $K_3 < G_5 < \bigotimes_{i=1}^{4} Z_2$. Therefore, we get four fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ with $P_1(\mu) = K_3$ and we have the same number for $P_1(\mu) = K_6$. By similar method, we have (1) Two fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ for $P_1(\mu) = K_8$, $P_1(\mu) = K_9$, $P_1(\mu) = K_{10}$, $P_1(\mu) = K_{12}$, $P_1(\mu) = K_{13}$, $P_1(\mu) = K_{15}$, $P_1(\mu) = K_{16}$, $P_1(\mu) = K_{17}$, $P_1(\mu) = K_{22}$, $P_1(\mu) = K_{23}$, $P_1(\mu) = K_{24}$ and $P_1(\mu) = K_{25}$. (2) seven fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ for $P_1(\mu) = H_5$, $P_1(\mu) = H_6$, $P_1(\mu) = H_7$, $P_1(\mu) = H_9$, $P_1(\mu) = H_{11}$, $P_1(\mu) = H_{12}$, $P_1(\mu) = H_{13}$ and $P_1(\mu) = H_{14}$. (3) nine fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ for $P_1(\mu) = H_8$ and $P_1(\mu) = H_9$. (4) ten fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ for $P_1(\mu) = H_{15}$. (5) twenty four fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ for $P_1(\mu) = H_1$, $P_1(\mu) = H_2$, $P_1(\mu) = H_3$ and

 $P_1(\mu) = H_4.$

Finally if $P_1(\mu) = I$, we have 248 subgroups fuzzy.

Thus, the total number of fuzzy subgroups of $\bigotimes_{i=1}^{4} Z_2$ is 496=2(248).

REFERENCES

- [1]. Lazlo, F. Structure and construction of fuzzy subgroup of a group, Fuzzy Set and System, 51 (1992), 105 109.
- [2]. Murali and B.B. Makamba, V. On an equivalence of fuzzy subgroups I, Fuzzy Sets and Systems, 123 (2001), 259-264.
- [3]. Murali and B.B. Makamba, V. On an equivalence of fuzzy subgroups II, Fuzzy Sets and Systems, 136 (2003), 93-104.

[4]. Roman, S. Lattice and Ordered Set, Springer, New York, 2008.

- [5]. Rosenfeld, A. Fuzzy groups, Journal of Mathematical Anal.and.App., 35(1971),512-517.
- [6]. Sulaiman and Abd Ghafur Ahmad, R. Counting fuzzy subgroups of symmetric groups S_2 , S_3 and alternating group A₄, Journal of Quality Measurement and Analysis.,6 (2010),57-63.
- [7]. Sulaiman and Abd Ghafur Ahmad, R. The number of fuzzy subgroups of finite cyclic groups, International Mathematical Forum., 6 no.20 (2011), 987-994.
- [8]. Sulaiman and Abd Ghafur Ahmad, R. The number of fuzzy subgroups of group defined by a presentation, International Journal of Algebra., 5 no.8 (2011), 375-382.
- [9]. Tarnauceanu, M. The number of fuzzy subgroups of finite cyclic groups and Delanoy numbers, European Journal of Combinatoric, 30 (2009), 283-286.