Counting Fuzzy Subgroups of $\underset{i=1}{\otimes} \mathbf{Z}_{2}$ by Lattice Subgroups

Afrah Mohammed Ibraheem
Department of Mathematics, Al-Mustansiriyah University, College of Education/Baghdad
Email:afrah.diyar@yahoo.com

Received on: 26 /9/2012 \& Accepted on: 26/11/2013

Abstract

In this paper, we compute the number of fuzzy subgroups of an abelian group $\otimes_{i=1}^{n} Z_{2}$ when $n=1,2,3$ and 4 by using the subgroups lattice of it .Also we construct $i=1$ the diagram of subgroups lattice of $\stackrel{\otimes}{i=1}_{\otimes}^{Z_{2}}, \mathrm{n}=1,2,3$ and 4 .

الخلاصة فـي هـذا البحـث قمنــا بحسـاب عـدد الزمر الجزئيــة الضـبابيـة للزمـرة الابداليــة n=1,2,3,4 باسـتخدام زمر هــا الجزئيــة المشـبكة .كمـا قمنـا بأنشـاء مخطـط الزمر الجزئيـة المشـبكة . $\mathrm{n}=1,2,3,4$ عندما $\mathrm{Z}_{2} \underset{i=1}{\otimes}{ }_{i=1}^{n}$

INTRODUCTION

Γ The study of fuzzy algebraic structures was started with the introduction of the concept of fuzzy subgroups by Rosenfeld in 1971 [5]. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group \{e\}. Some authors have used the equivalence relation of fuzzy sets to study the equivalence of fuzzy subgroups ([1], [2], [3], and [9]). All of them have treated the particular case of finite Abelian group. It is interesting to count the number of fuzzy subgroups of nonabelian groups and construct them. Laszlo in [1] has studied the construction of fuzzy subgroup of a group of order one to six. Sulaiman and Abd Ghafur in [6] have counted the number of fuzzy subgroups of nonabelian symmetric groups S_{2}, S_{3} and alternating group A_{4}. In the other paper, they [8] have counted the number of fuzzy subgroups of group defined by a presentation. In this paper we compute the number of fuzzy subgroups of an abelian group $\stackrel{n}{i=1}_{\otimes}^{Z_{2}}$, for all $n=1,2,3$ and 4 by using the subgroups lattice, and we construct the diagram of subgroups lattice of it.

BASIC DEFINITIONS AND RESULTS OF FUZZY SUBGROUPS

We recall some definitions and results that will be used later.
Definition 2.1.[4] A partial ordered on a nonempty set P is a binary relation \leq on P that is reflexive, antisymmetric and transitive. The pair $<\mathrm{P}, \leq>$ is called a partially ordered set or poset. Poset $<P, \leq>$ is totally ordered if every $x, y \in P$ are comparable, that is $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$. A nonempty subset S of P is a chain in P if S is totally ordered by \leq.
Definition 2.2.[4] Let $<\mathrm{P}, \leq>$ be a poset and let $\mathrm{S} \subseteq \mathrm{P}$. An upper bound for S is an element $x \in P$ for which $s \leq x, \forall s \in S$. The least upper bound of S is called the supremum or join of S. A lower bound for S is an element $x \in P$ for which $x \leq s$, $\forall \mathrm{s} \in \mathrm{S}$. The greatest lower bound of S is called the infimum or meet of S . Poset $<$ $\mathrm{P}, \leq>$ is called a lattice if every pair x , y elements of P has a supremum and an infimum.
Note that the set of all of subgroups G under the"subgroup" relation is a lattice. This lattice is called the lattice subgroup of G.
Definition 2.3. [5] Let X is a nonempty set. A fuzzy set of X is a function μ from X into $[0,1]$.
Definition 2.4. [5] A fuzzy subset μ of a group G is called a fuzzy subgroup of G if:
i. $\mu(x y) \geq \min \{\mu(x), \mu(y)\}, \forall x, y \in G$ and
ii. $\mu\left(\mathrm{x}^{-1}\right)=\mu(\mathrm{x}), \forall \mathrm{x} \in \mathrm{G}$.

Example. Let $\mathrm{G}=\mathrm{S}_{3}$ be the symmetric group of degree 3 .
Define g: $\mathrm{G} \rightarrow[0,1]$ as follows:

$$
g(x)= \begin{cases}1 & \text { if } x=e \\ 0.5 & \text { if } x=(123),(132) \\ 0 & \text { otherwise }\end{cases}
$$

where e is the identity element of S_{3}. It can be easily verified that g is a fuzzy subgroup of S3.

Theorem 2.5.[5] Let e denote the identity element of G. If μ is a fuzzy subgroup of G , then $\mu(\mathrm{e}) \geq \mu(\mathrm{x}), \forall \mathrm{x} \in \mathrm{G}$.

Theorem 2.6.[7] Function $\mu: G \rightarrow[0,1]$ is a fuzzy subgroup of G if there is a chain
$\mathrm{P}_{1}<\mathrm{P}_{2}<\ldots<\mathrm{P}_{\mathrm{n}}=\mathrm{G}$ in subgroups lattice of G such that μ can be written as

$$
\mu(\mathrm{x})=\left\{\begin{array}{l}
\theta_{1}, \mathrm{x} \in \mathrm{P}_{1} \\
\theta_{2}, \mathrm{x} \in \mathrm{P}_{2} \backslash \mathrm{P}_{1} \\
\vdots \\
\theta_{\mathrm{n}}, \mathrm{x} \in \mathrm{P}_{\mathrm{n}} \backslash \mathrm{P}_{\mathrm{n}-1}
\end{array}\right.
$$

Where θ_{i} is element of $[0,1]$ and $\theta_{\mathrm{i}}>\theta_{\mathrm{j}}$ if $\mathrm{i}>\mathrm{j}$.
Example. Consider the group $\mathrm{G}=\mathrm{Z}_{12}$. Define function μ as follows:

$$
\mu(x)= \begin{cases}1, & x \in\{0,2,4,6,8,10\} \\ 1 / 2, & x \in\{1,3,5,7,9,11\}\end{cases}
$$

Note that $P_{1}(\mu)=\{0,2,4,6,8,10\}$ and $P_{2}(\mu)=Z_{12}$ both are subgroup of Z_{12}. According to Theorem 2.6, μ is a fuzzy subgroup of Z_{12}.
Definition 2.7. [7] Let μ, λ be fuzzy subgroups of G of the form

$$
\mu(\mathrm{x})=\left\{\begin{array}{l}
\theta_{1}, \mathrm{x} \in \mathrm{P}_{1} \\
\theta_{2}, \mathrm{x} \in \mathrm{P}_{2} \backslash \mathrm{P}_{1} \\
\vdots \\
\theta_{\mathrm{n}}, \mathrm{x} \in \mathrm{P}_{\mathrm{n}} \backslash \mathrm{P}_{\mathrm{n}-1}
\end{array}\right.
$$

$\lambda(\mathrm{x})=\left\{\begin{array}{ll}\delta_{1} & , \mathrm{x} \in \mathrm{M}_{1} \\ \delta_{2} & , \mathrm{x} \in \mathrm{M}_{2} \backslash \mathrm{M}_{1} \\ : & \\ & \delta_{\mathrm{m}}\end{array}, \mathrm{x} \in \mathrm{M}_{\mathrm{m}} \backslash\right.$
$\mathrm{M}_{\mathrm{m}-1}$

Then we say that μ and λ are equivalent and write $\mu \sim \lambda$ if
(1) $m=n$ and
(2) $\mathrm{Pi}=\mathrm{Mi}, \forall \mathrm{i} \in\{1,2, \mathrm{~m}\}$.

Two fuzzy subgroups of G are said to be different if they are not equivalent.
Lemma 2.8. [6] The number of fuzzy subgroups of G is equal to the number of chain on the lattice subgroups of G.

THE NUMBER OF FUZZY SUBGROUPS OF $\stackrel{n}{i=1}_{\stackrel{n}{\otimes}}^{Z_{2}}$ IF N=1, 2, 3 AND 4

In this section, we give a guiding principle to determine the number of fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ when $n=1,2,3$ and 4 . We denote the number of fuzzy

The Number of Fuzzy Subgroups of Z2

Let $Z_{2}=\{1, x\}$. The two subgroups of $Z 2$ are $I=\{1\}$ and Z_{2}. Therefore, we can construct a fuzzy subgroup μ of Z_{2} with length of μ equal to 1 or 2 . The fuzzy subgroup of Z 2 with length 1 is $\mu(\mathrm{x})=\theta_{1}$, $\quad \forall \mathrm{Z}_{2}$.
While the fuzzy subgroup of Z_{2} with length 2 is

$$
\mu(x)=\left\{\begin{array}{cl}
\theta_{1} & , x \in\{1\} \\
\theta_{2} & , x \in Z_{2} \backslash\{1\}, \text { where } \theta_{1} \text { and } \theta_{2} \in[0,1] .
\end{array}\right.
$$

Thus, o $\left(\mathrm{F}_{\mathrm{Z} 2}\right)=2$.

Figure (1) Diagram of poset subgroups of Z_{2}.

The Number of Fuzzy Subgroups of $\mathbf{Z}_{\mathbf{x}} \times \mathbf{Z}_{\mathbf{2}}$

Let $\mathrm{Z}_{2} \times \mathrm{Z}_{2}=\{(1,1),(\mathrm{x}, 1),(1, \mathrm{y}),(\mathrm{x}, \mathrm{y})\}$.There are five subgroups of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$, namely
$\mathrm{Z}_{2} \times \mathrm{Z}_{2}, \mathrm{I}=\{(1,1)\}, \mathrm{H}_{1}=\{(1,1),(\mathrm{x}, 1)\}, \mathrm{H}_{2}=\{(1,1),(1, \mathrm{y})\}$ and $\mathrm{H}_{3}=\{(1,1),(\mathrm{x}, \mathrm{y})$ \}.
Let $\mathrm{S}(\mathrm{G})$ denotes the set of all subgroups of group G . The diagram of poset $<\mathrm{S}\left(\mathrm{Z}_{2}\right.$ $\times \mathrm{Z}_{2}$), < >is as follows:

Figure (2) Diagram of poset subgroups of $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
We will compute the number of fuzzy subgroups of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$.
Let μ be a fuzzy subgroup of $Z_{2} \times Z_{2}$. We will identify μ according to $P_{1}(\mu)$. Every subgroup of $Z_{2} \times Z_{2}$ can be chosen to be $P_{1}(\mu)$.

If $P_{1}(\mu)=Z_{2} \times Z_{2}$, we only have one fuzzy subgroup of $Z_{2} \times Z_{2}$, that is

$$
\mu_{1}(\mathrm{x})=\theta_{1}, \forall \mathrm{x} \in \mathrm{Z}_{2} \times \mathrm{Z}_{2}
$$

If $P_{1}(\mu)=H_{1}$, then the only option we have is $Z_{2} \times Z_{2}=P_{2}(\mu)$. Therefore we only have one fuzzy subgroup of $Z_{2} \times Z_{2}$ namely

$$
\mu_{2}(\mathrm{x})= \begin{cases}\theta_{1}, & \mathrm{x} \in \mathrm{H}_{1} \\ \theta_{2} & , \mathrm{x} \in \mathrm{Z}_{2} \times \mathrm{Z}_{2} \backslash \mathrm{H}_{1} .\end{cases}
$$

Similarly, we have one fuzzy subgroups for $P_{1}(\mu)=H_{2}, P_{1}(\mu)=H_{3}$, namely

$$
\mu_{3}(x)=\left\{\begin{array}{c}
\theta_{1}, x \in H_{2} \\
\theta_{2}, x \in Z_{2} \times Z_{2} \backslash H_{2}
\end{array} \quad \mu_{4}(x)=\left\{\begin{array}{c}
\theta_{1}, \quad x \in H_{3} \\
\theta_{2}, x \in Z_{2} \times Z_{2} \backslash \\
H_{3}
\end{array}\right.\right.
$$

Respectively.
Finally if $P_{1}(\mu)=I$, then by observing the poset of $Z_{2} \times Z_{2}$ see Figure (2) we may construct fuzzy subgroups of $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ of length 2 ,

If the length is 2 , then $\mathrm{P}_{2}(\mu)=\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ and we can choose one out of three to be $\mathrm{P}_{2}(\mu)$, namely $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}.

Thus, there are four fuzzy subgroups that can be constructed with $P_{1}(\mu)=I$. Thus the total number of fuzzy subgroups of $Z_{2} \times Z_{2}$ is eight.

The Number of Fuzzy Subgroups of $\underset{i=1}{\stackrel{3}{\otimes} Z_{2}\left(Z_{2} \times Z_{2} \times Z_{2}\right)}$
Let $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}=\{(1,1,1),(\mathrm{x}, 1,1),(1, \mathrm{y}, 1),(1,1, \mathrm{z}),(\mathrm{x}, 1, \mathrm{z}),(\mathrm{x}, \mathrm{y}, 1),(1, \mathrm{y}, \mathrm{z})$, ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) \}.
There are sixteen subgroups of $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$, namely
$\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}, \mathrm{I}=\{(1,1,1)\}, \mathrm{K}_{1}=\{(1,1,1),(\mathrm{x}, 1,1)\}, \mathrm{K}_{2}=\{(1,1,1),(1, \mathrm{y}, 1)\}$,
$\mathrm{K}_{3}=\{(1,1,1),(1,1, \mathrm{z})\}, \mathrm{K}_{4}=\{(1,1,1),(\mathrm{x}, \mathrm{y}, 1)\}, \mathrm{K}_{5}=\{(1,1,1),(\mathrm{x}, 1, \mathrm{z})\}, \mathrm{K}_{6}=$ $\{(1,1,1),(1, y, z)\}, K_{7}=\{(1,1,1),(x, y, z)\}, H_{1}=\{(1,1,1),(x, 1,1),(1, y, 1),(x, y, 1)\}, H_{2}$ $=\{(1,1,1), \quad(x, 1,1), \quad(1,1, z), \quad(x, 1, z)\} \quad, H_{3}=\{(1,1,1), \quad(1,1, z), \quad(1, y, 1), \quad(1, y, z)\}$ $, H_{4}=\{(1,1,1),(x, y, 1),(1,1, z),(x, y, z)\}, H_{5}=\{(1,1,1),(x, 1, z),(1, y, 1),(x, y, z)\}$
, $\mathrm{H}_{6}=\{(1,1,1),(1, y, z),(x, 1,1),(x, y, z)\}$ and
$H_{7}=\{(1,1,1),(x, y, 1),(1, y, z),(x, 1, z)\}$.

The diagram of poset subgroups $<\mathrm{S}\left(\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}\right),<>$ is as follows:

Figure (3) Diagram of poset subgroups of $\underset{i=1}{\stackrel{3}{\otimes} Z_{2}}$.
 diagram and using Lemma 2.8. We can see that the maximal chain on that lattice consists of four subgroups of $\underset{i=1}{\stackrel{3}{\otimes}} Z_{2}$. Therefore, the fuzzy subgroup μ of $\underset{i=1}{\otimes} Z_{2}$ has length 1,2,3 or 4.

Let μ be a fuzzy subgroup of $\underset{i=1}{\underset{\otimes}{3}} Z_{2}$. We will identify μ according to $\mathrm{P}_{1}(\mu)$. Every subgroup of $\underset{i=1}{\stackrel{3}{\otimes} Z_{2}}$ can be chosen to be $P_{1}(\mu)$. If $P_{1}(\mu)=\stackrel{\underset{i=1}{3}}{i=1} Z_{2}$, we only have one fuzzy subgroup of $\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}$, that is

$$
\mu(\mathrm{x})=\theta_{1} \quad, \forall \mathrm{x} \in \underset{i=1}{\underset{\otimes}{\otimes} Z_{2}} .
$$

If $P_{1}(\mu)=H_{1}$, then the only option we have is $\underset{i=1}{\otimes} Z_{2}=P_{2}(\mu)$. Therefore we only have one fuzzy subgroup of $\underset{i=1}{\underset{i}{3}} Z_{2}$ namely

$$
\mu(x)=\left\{\begin{array}{c}
\theta_{1}, \quad \underset{\sim}{x} \in H_{1} \\
\theta_{2}, \quad x \in \stackrel{3}{\otimes} Z_{i=1}^{3} \backslash H_{1} .
\end{array}\right.
$$

Similarly, we have one fuzzy subgroups for $P_{1}(\mu)=H_{2}, P_{1}(\mu)=H_{3}, P_{1}(\mu)=H_{4}$, $\mathrm{P}_{1}(\mu)=\mathrm{H}_{5}, \mathrm{P}_{1}(\mu)=\mathrm{H}_{6}$ and $\mathrm{P}_{1}(\mu)=\mathrm{H}_{7}$.

If $\mathrm{P}_{1}(\mu)=\mathrm{K}_{1}$, then we have four chains, those are $\mathrm{K}_{1}<\underset{i=1}{\otimes} Z_{2}, \mathrm{~K}_{1}<\mathrm{H}_{1}<$ $\underset{i=1}{\otimes} Z_{2}, K_{1}<\mathrm{H}_{2}<\stackrel{\underset{i=1}{\otimes} Z_{2}}{ }$ and $\mathrm{K}_{1}<\mathrm{H}_{6}<\underset{i=1}{\otimes} \mathrm{Z}_{2}$. Therefore, we get four fuzzy subgroups of $\underset{i=1}{\stackrel{3}{\otimes}} Z_{2}$ with $\mathrm{P}_{1}(\mu)=\mathrm{K}_{1}$, those are

$$
\mu(x)=\left\{\begin{array}{cc}
\theta_{1}, & x \in K_{1} \\
\theta_{2}, & x \in \underset{i=1}{\otimes} Z_{2} \backslash K_{1}
\end{array}, \quad \mu(x)=\left\{\begin{array}{cc}
\theta_{1}, & x \in K_{1} \\
\theta_{2}, & x \in H_{1} \backslash K_{1} \\
\theta_{3}, & x \in \underset{\substack{\otimes \\
i=1}}{3} Z_{2} \backslash
\end{array}\right.\right.
$$

H_{1}

$$
\mu(x)=\left\{\begin{array}{clc}
\theta_{1}, & x \in K_{1} & \mu(x)=\quad \theta_{1}, \quad x \in K_{1} \\
\theta_{2}, & x \in H_{2} \backslash K_{1} \\
\theta_{3}, & x \in \underset{i=1}{\otimes} Z_{2} \backslash H_{2} & \text { and } \\
\theta_{2}, \quad x \in H_{6} \backslash K_{1} \\
x \in \underset{i=1}{\otimes} Z_{2} \backslash H_{6}
\end{array}\right.
$$

Similarly, we have four fuzzy subgroups for $P_{1}(\mu)=K_{2}, P_{1}(\mu)=K_{3}, P_{1}(\mu)=$ $K_{4}, P_{1}(\mu)=K_{5}, P_{1}(\mu)=K_{6}$ and $P_{1}(\mu)=K_{7}$.

Finally if $P_{1}(\mu)=I$, we have 36 subgroups fuzzy. Thus, the total number of fuzzy subgroups of $\underset{i=1}{\stackrel{3}{\otimes} Z_{2}}$ is $(1+28+7+36=72)$.
The Number of Fuzzy Subgroups of $\underset{i=1}{\otimes} Z_{2}\left(Z_{2} \times Z_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$

Let $Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}=\{(1,1,1,1),(x, 1,1,1),(1, y, 1,1),(1,1, z, 1),(1,1,1, h)$, $(x, 1, z, 1), \quad(x, y, 1,1), \quad(1, y, z, 1),(1,1, z, h),(1, y, 1, h),(x, 1,1, h), \quad(x, y, z, 1), \quad(1, y, z, h)$, (x,1,z,h), (x,y,1,h), (x,y,z,h) \}.
There are 48 subgroups of $\underset{i=1}{\stackrel{4}{\otimes} Z_{2}}$, namely $Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}, I=\{(1,1,1,1)\}$,
$\mathrm{H}_{1}=\{(1,1,1,1),(\mathrm{x}, 1,1,1)\}, \mathrm{H}_{2}=\{(1,1,1,1),(1, \mathrm{y}, 1,1)\}, \mathrm{H}_{3}=\{(1,1,1,1),(1,1, \mathrm{z}, 1)\}$,
$\mathrm{H}_{4}=\{(1,1,1,1),(1,1,1, \mathrm{~h})\}, \mathrm{H}_{5}=\{(1,1,1,1),(\mathrm{x}, \mathrm{y}, 1,1)\}, \mathrm{H}_{6}=\{(1,1,1,1),(\mathrm{x}, 1, \mathrm{z}, 1)\}$,
$\mathrm{H}_{7}=\{(1,1,1,1),(1, y, 1, h)\}, \mathrm{H}_{8}=\{(1,1,1,1),(1, y, z, 1)\}, \mathrm{H}_{9}=\{(1,1,1,1),(1,1, z, h)\}$,
$\mathrm{H}_{10}=\{(1,1,1,1),(\mathrm{x}, 1,1, \mathrm{~h})\}, \mathrm{H}_{11}=\{(1,1,1,1),(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1)\}, \mathrm{H}_{12}=\{(1,1,1,1),(\mathrm{x}, \mathrm{y}, 1, \mathrm{~h})\}, \mathrm{H}_{13}=$
$\{(1,1,1,1),(\mathrm{x}, 1, \mathrm{z}, \mathrm{h})\}, \mathrm{H}_{14}=\{(1,1,1,1),(1, \mathrm{y}, \mathrm{z}, \mathrm{h})\}, \mathrm{H}_{15}=\{(1,1,1,1),(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{h})\}, \mathrm{K}_{1}=\{(1,1,1$
,1), (x,1,1,1), (1,y,1,1), (x,y,1,1)\}, $\mathrm{K}_{2}=\{(1,1,1,1),(x, 1,1,1),(1,1, z, 1),(x, 1, z, 1)\}$, $K_{3}=\{(1,1,1,1),(x, 1,1,1),(1,1,1, h),(x, 1,1, h)\}, K_{4}=\{(1,1,1,1),(1,1,1, h),(1,1, z, 1)$, $(1,1, z, h)\}, K_{5}=\{(1,1,1,1),(1, y, 1,1),(1,1,1, h),(1, y, 1, h)\}, K_{6}=\{(1,1,1,1),(1, y, 1,1)$, $(1,1, z, 1),(1, y, z, 1)\}, K_{7}=\{(1,1,1,1),(x, y, z, 1),(1, y, z, 1),(x, 1,1,1)\}, K_{8}=\{(1,1,1,1)$, $(x, y, z, 1),(x, 1, z, 1),(1, y, 1,1)\}, K_{9}=\{(1,1,1,1),(x, y, z, 1),(x, y, 1,1),(1,1, z, 1)\}$, $K_{10}=\{(1,1,1,1),(x, y, 1, h),(x, y, 1,1),(1,1,1, h)\}, K_{11}=\{(1,1,1,1),(x, y, 1, h),(1, y, 1,1)$, $(x, 1,1, h)\}, K_{12}=\{(1,1,1,1),(x, y, 1, h),(x, 1,1,1),,(1, y, 1, h)\}, K_{13}=\{(1,1,1,1),(x, 1, z, h)$, $(x, 1,1,1),(1,1, z, h)\}, K_{14}=\{(1,1,1,1),(x, 1, z, h),(1,1, z, 1),(x, 1,1, h)\}, K_{15}=\{(1,1,1,1)$, $(x, 1, z, h),(1,1,1, h),(x, 1, z, 1)\}, K_{16}=\{(1,1,1,1),(1, y, z, h),(1, y, 1,1),(1,1, z, h)\}$, $K_{17}=\{(1,1,1,1),(1, y, z, h),(1,1, z, 1),(1, y, 1, h)\}, K_{18}=\{(1,1,1,1),(1, y, z, h),(1,1,1, h)$, $(1, y, z, 1)\}, K_{19}=\{(1,1,1,1),(x, y, z, h),(x, y, 1,1),(1,1, z, h)\}, K_{20}=\{(1,1,1,1)$,
(x,y,z,h), (1,y,z,1), (x,1,1,h)\}, $\mathrm{K}_{21}=\{(1,1,1,1),(x, y, z, h),(x, 1, z, 1),(1, y, 1, h)\}$, $K_{22}=\{(1,1,1,1),(x, y, z, h),(x, 1,1,1),(1, y, z, h)\}, K_{23}=\{(1,1,1,1),(x, y, z, h),(1, y, 1,1)$, $(x, 1, z, h)\}, K_{24}=\{(1,1,1,1),(x, y, z, h),(1,1, z, 1),(x, y, 1, h)\}, K_{25}=\{(1,1,1,1),(x, y, z, h)$, (1,1,1,h), (x,y,z,1)\},
$G_{1}=\{(1,1,1,1), \quad(x, y, z, 1), \quad(x, 1,1,1), \quad(1, y, 1,1), \quad(1,1, z, 1), \quad(1, y, z, 1), \quad(x, 1, z, 1)$, (x,y,1,1)\},
$G_{2}=\{(1,1,1,1), \quad(x, y, 1, h),(x, 1,1,1), \quad(1, y, 1,1), \quad(1,1,1, h), \quad(1, y, 1, h), \quad(x, 1,1, h)$, (x,y,1,1)\},
$G_{3}=\{(1,1,1,1), \quad(x, 1, z, h), \quad(x, 1,1,1), \quad(1,1,1, h), \quad(1,1, z, 1), \quad(1,1, z, h), \quad(x, 1,1, h)$, (x,1,z,1) \},
$\mathrm{G}_{4}=\{(1,1,1,1),(1, y, z, h),(1, y, 1,1),(1,1, z, 1),(1,1,1, h),(1, y, z, 1),(1, y, 1, h),(1,1, z$, h) $\}$,
$G_{5}=\{(1,1,1,1), \quad(x, y, z, h), \quad(x, y, z, 1), \quad(1,1,1, h), \quad(1, y, z, h), \quad(x, 1,1,1), \quad(x, 1,1, h)$, (1,y,z,1) \}, and
$\mathrm{G}_{6}=\{(1,1,1,1),(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{h}),(\mathrm{x}, \mathrm{y}, 1, \mathrm{~h}),(1,1, \mathrm{z}, 1),(\mathrm{x}, 1, \mathrm{z}, \mathrm{h}),(1, \mathrm{y}, 1,1),(1, \mathrm{y}, \mathrm{z}, 1),(\mathrm{x}, 1,1, \mathrm{~h})\}$
.The diagram of poset subgroups $<\mathrm{S}\left(\underset{i=1}{\stackrel{4}{\otimes} Z_{2}}\right),<>$ is as follows:

Figure (4) Diagram of poset subgroups of $\left(Z_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$.
We will count the number of the fuzzy subgroups of $\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}$ by observing its diagram and using Lemma 2.8 .We can see that the maximal chain on that lattice consists of five subgroups of $\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}$. Therefore, the fuzzy subgroup μ of $\underset{i=1}{\otimes} Z_{2}$ has length $1,2,3,4$ or 5 .

Let μ be a fuzzy subgroup of $\underset{i=1}{\underset{i}{\otimes} Z_{2}}$. We will identify μ according to $\mathrm{P}_{1}(\mu)$. Every subgroup of $\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}$ can be chosen to be $P_{1}(\mu)$. If $P_{1}(\mu)=\underset{i=1}{\underset{\otimes}{\otimes} Z_{2}}$, we only have one fuzzy subgroup of $\underset{i=1}{\underset{~}{\otimes}} Z_{2}$, that is

$$
\mu(\mathrm{x})=\theta_{1} \quad, \forall \mathrm{x} \in \stackrel{4}{\underset{i=1}{\otimes} Z_{2} .}
$$

If $P_{1}(\mu)=G_{1}$, then the only option we have is $\underset{i=1}{\otimes} Z_{2}=P_{2}(\mu)$. Therefore we only have one fuzzy subgroup of $\underset{i=1}{\underset{\otimes}{\otimes}} Z_{2}$ namely

$$
\mu(\mathrm{x})=\left\{\begin{array}{c}
\theta_{1}, \quad \mathrm{x} \in \mathrm{G}_{1} \\
\theta_{2}, \quad \mathrm{x} \in \stackrel{4}{\otimes} \underset{i=1}{\otimes} Z_{2} \backslash \mathrm{G}_{1} .
\end{array}\right.
$$

Similarly, we have one fuzzy subgroups for $P_{1}(\mu)=G_{2}, P_{1}(\mu)=G_{3}, P_{1}(\mu)=G_{4}$, $P_{1}(\mu)=G_{5}, P_{1}(\mu)=G_{6}, P_{1}(\mu)=H_{19}$ and $P_{1}(\mu)=H_{21}$.

If $P_{1}(\mu)=K_{1}$, then we have three chains, those are $K_{1}<\underset{i=1}{\otimes} Z_{2}, K_{1}<G_{1}<$ $\underset{i=1}{\otimes} Z_{2}$ and $\mathrm{K}_{1}<\mathrm{G}_{2}<\underset{i=1}{\otimes} \mathrm{Z}_{2}$.Therefore, we get three fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ with $\mathrm{P}_{1}(\mu)=\mathrm{K}_{1}$, those are

$$
\mu(x)=\left\{\begin{array}{cc}
\theta_{1}, & x \in K_{1} \\
\theta_{2}, & x \in \stackrel{4}{\otimes} Z_{i=1}^{\otimes} \backslash \mathrm{K}_{1}
\end{array}, \quad \mu(x)=\left\{\begin{array}{cl}
\theta_{1}, & x \in \mathrm{~K}_{1} \\
\theta_{2}, & x \in \mathrm{G}_{1} \backslash \mathrm{~K}_{1} \\
\theta_{3}, & \mathrm{x} \in \underset{i=1}{\otimes} Z_{2} \backslash
\end{array}\right.\right.
$$

G_{1}
and

$$
\mu(x)=\left\{\begin{array}{rc}
\theta_{1}, \quad x \in K_{1} \\
\theta_{2}, & x \in G_{2} \backslash K_{1} \\
\theta_{3}, & x \in \underset{i=1}{\otimes} Z_{2} \backslash G_{2}
\end{array}\right.
$$

Similarly, we have three fuzzy subgroups for $P_{1}(\mu)=K_{2}, P_{1}(\mu)=K_{4}, P_{1}(\mu)=$ $K_{5}, P_{1}(\mu)=K_{7}, P_{1}(\mu)=K_{11}, P_{1}(\mu)=K_{14}, P_{1}(\mu)=K_{18}$ and $P_{1}(\mu)=K_{20}$.
If $P_{1}(\mu)=K_{3}$, then we have four chains, those are $K_{3}<\underset{i=1}{\otimes} Z_{2}, K_{3}<G_{2}<\underset{i=1}{\otimes} Z_{2}, K_{3}<$ $\mathrm{G}_{3}<\underset{i=1}{\otimes} Z_{2}$ and $K_{3}<\mathrm{G}_{5}<\underset{i=1}{\otimes} Z_{2}$. Therefore, we get four fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ with $P_{1}(\mu)=K_{3}$ and we have the same number for $P_{1}(\mu)=K_{6}$.
By similar method, we have
(1) Two fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ for $P_{1}(\mu)=K_{8,}, P_{1}(\mu)=K_{9}, P_{1}(\mu)=K_{10}, P_{1}(\mu)=$ K_{12},
$\mathrm{P}_{1}(\mu)=\mathrm{K}_{13}, \mathrm{P}_{1}(\mu)=\mathrm{K}_{15}, \mathrm{P}_{1}(\mu)=\mathrm{K}_{16}, \mathrm{P}_{1}(\mu)=\mathrm{K}_{17}, \mathrm{P}_{1}(\mu)=\mathrm{K}_{22}, \mathrm{P}_{1}(\mu)=\mathrm{K}_{23}, \mathrm{P}_{1}(\mu)=$ K_{24} and $\mathrm{P}_{1}(\mu)=\mathrm{K}_{25}$.
(2) seven fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ for $P_{1}(\mu)=H_{5}, P_{1}(\mu)=H_{6}, P_{1}(\mu)=H_{7}, P_{1}(\mu)=$ H_{9},
$\mathrm{P}_{1}(\mu)=\mathrm{H}_{11}, \mathrm{P}_{1}(\mu)=\mathrm{H}_{12}, \mathrm{P}_{1}(\mu)=\mathrm{H}_{13}$ and $\mathrm{P}_{1}(\mu)=\mathrm{H}_{14}$.
(3) nine fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ for $P_{1}(\mu)=H_{8}$ and $P_{1}(\mu)=H_{9}$.
(4) ten fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ for $P_{1}(\mu)=H_{15}$.
 $\mathrm{P}_{1}(\mu)=\mathrm{H}_{4}$.
Finally if $\mathrm{P}_{1}(\mu)=\mathrm{I}$, we have 248 subgroups fuzzy.
Thus, the total number of fuzzy subgroups of $\underset{i=1}{\otimes} Z_{2}$ is $496=2(248)$.

REFERENCES

[1]. Lazlo, F. Structure and construction of fuzzy subgroup of a group, Fuzzy Set and System, 51 (1992), 105-109.
[2]. Murali and B.B. Makamba, V. On an equivalence of fuzzy subgroups I, Fuzzy Sets and Systems, 123 (2001), 259-264.
[3]. Murali and B.B. Makamba, V. On an equivalence of fuzzy subgroups II, Fuzzy Sets and Systems, 136 (2003), 93-104.
[4]. Roman,S. Lattice and Ordered Set, Springer, New York, 2008.
[5]. Rosenfeld,A. Fuzzy groups, Journal of Mathematical Anal.and.App., 35(1971),512-517.
[6]. Sulaiman and Abd Ghafur Ahmad, R. Counting fuzzy subgroups of symmetric groups S_{2}, S_{3} and alternating group A_{4}, Journal of Quality Measurement and Analysis.,6 (2010),57-63.
[7]. Sulaiman and Abd Ghafur Ahmad, R. The number of fuzzy subgroups of finite cyclic groups, International Mathematical Forum., 6 no. 20 (2011), 987-994. [8]. Sulaiman and Abd Ghafur Ahmad, R. The number of fuzzy subgroups of group defined by a presentation, International Journal of Algebra., 5 no. 8 (2011), 375-382.
[9]. Tarnauceanu,M. The numb er of fuzzy subgroups of finite cyclic groups and Delanoy numbers, European Journal of Combinatoric, 30 (2009), 283-286.

