Eng. & Tech. Journal, Vol. 32, Part (B), No.4, 2014

The 4th International scientific Conference on Nanotechnology& Advanced Materials & Their Annlications (ICNAMA 2013)3-4 Nov. 2013

Preparation and Characterization of High Quality SnO₂ Films Grown by (HPCVD)

Dr. Baha T. Chiad Science College, University of Baghdad/Baghdad Nathera Ali Science College, University of Baghdad/Baghdad Nagam Th.Ali Ministry of Science and Technology/Baghdad Nagam2105@gmail.com

ABSTRACT

In this research SnO_2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 ^oC. Structure properties have been studied by using X-ray diffraction (XRD), its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) ^oC diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The results show that both increase with substrate temperature increase this measurements deal with X-Ray diffraction results, that there is large change in the structure state of SnO2 thin f film by changing temperature parameter.

Keywords: Sno₂, Thin Films, Hpcvd

الخلاصة

في هذا البحث تم تحضير أغشية اوكسيد القصدير بطريقة الترسيب الكيماوي بالبخار بالضغط الجوي على قاعدة ساخنة من الزجاج وسيلكون لدرجات حرارة مختلفة. الخصائص البصرية للغشاء تم قياسها باستخدام جهاز مطياف (.UV-Vis) اقصى نفاذية كانت بحدود (%94) عند 2⁰ 400 . أما الخصائص التركيبية تم در استها باستخدام حيود الأشعة السينية التي أوضحت انه جميع الاغشية هي ذات تركيب بلوري بطبيعتها وبتغيير حرارة نمو الغشاء لمدى 2⁰ (000-300) فان قمم الحيود ذات تركيب المرعي المعنية من الخصائص التركيبية تم در استها باستخدام حيود الأشعة السينية التي أوضحت انه جميع الاغشية هي الخصائص التركيبية تم در استها باستخدام حيود الأشعة السينية التي أوضحت انه جميع الاغشية هي ذات تركيب بلوري بطبيعتها وبتغيير حرارة نمو الغشاء لمدى 2⁰ (300-500) فان قمم الحيود أصبحت اكثر حدة والحجم الحبيبي يتغير. استخدم مجهر القوى الذرية لتحليل طوبو غرافية وتركيب مسطح أغشية اوكسيد القصدير حيث تم حساب الخشونة ومعدل الجذر التربيعي للعينات المحضرة وادرجات حرارة مختلفة واظهرت النتائج بأن كلاهما يزداد مع ازدياد درجة حرارة الاساس وهذا يتفقي مع نتائج حيود الأشعة المرير بالحالة التربيعي للعينات المحضرة مراحبة مع المحضرة ومعدل الجذر التربيعي للعينات المحضرة وادرجات حرارة المحار الخشونة ومعدل الجذر التربيعي لينات المحضرة ومترا المرارة مختلفة واظهرت النتائج بأن كلاهما يزداد مع ازدياد درجة حرارة الاساس وهذا يتفق مع نتائج حيود الأشعة السينية كما ان هنالك تغيير كبير بالحالة التركيبية لغشاء 200 مع تغيير مؤثر الحرارة.

801

https://doi.org/10.30684/etj.32.4B.20 2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

INTRODUCTION

The most common form of SnO_2 is described and SnO_2 in the substrate in the sub

Physical properties of SnO2 are summarized in Table (1) which gives tin oxide the following daily-life properties:

- low electrical resistance
- transparent for visible light but reflective for infrared light
- environmental stable
- high hardness

These properties make thin films of SnO2 good candidates for applications where transparency and conductivity of electricity are required. Currently, tin oxide films are used as heterogeneous catalyst in oxidation reactions [5, 6], as infrared reflector in low-energy glass and anti-static layer [7], as transparent electrode in displays or solar cells [8], as protective layer on glass containers [4, 9] or as solid-state gas sensor for the detection of a wide range of gasses [10, 11]. SnO2 has been synthesized by different methods such as the sol–gel method, chemical vapor deposition (CVD), magnetron sputtering and hydrothermal treatment [12-13].

The aims of the present work are to prepare SnO_2 thin films by using a hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si(n-type) substrates at various temperatures.

Property	SnO ₂			
Mineral name	Cassiterite			
Crystal structure	Tetragonal, rutile			
Space group	D^{14}_{4h} or P_{42}/mnm			
Lattice constants [nm]	a=0.474			
	b= 0.319			
Oxidation states	Sn ⁴⁺ , O ²⁻			
Molar mass [g mol-1]	150.71			
Density p [g cm-3]	6.85			
Mohs hardness [-]	6.5			
Melting point	1630			
Band gap [eV]	3.6			
Common extrinsic	Sb,F,Cl			
n-type dopants				

Table (1) Physical properties of tin dioxide [4, 5].

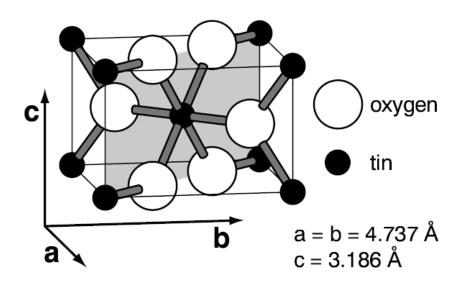
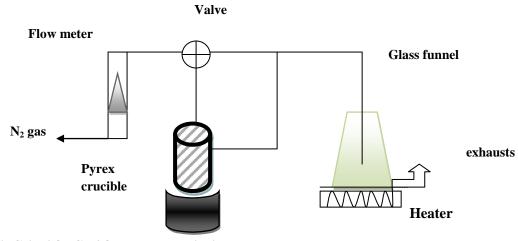


Figure (1) The rutile structure of SnO₂ unit cell.

EXPERIMENTAL WORK


The salt hydrated tin dichloride (SnCl2H₂O) was used as start material mixing with methanol (CH3OH) and use N_2 gas as carrier gas, tin oxide thin films were prepared by homemade HPCVD, the schematic diagram of the Hot Plate Atmospheric Pressure Chemical Vapor Deposition system is given in Figure (2). The reaction chamber composes of Pyrex funnel put upside down on hot stainless steel plate. The glass slides and silicone substrate were cleaned ultrasonically by Trichloroethylene (TCE), acetone, ethanol followed by de-ionized water and dry with N_2 .

Before using Si wafer it etches with HF (10%). The vapor of the precursor reactance carried on the glass substrate by the N₂ gas. The operating parameters are shown in Table (2). X-Ray diffraction (CuK α) radiation with a wavelength λ =0.154060 nm at 2 θ (20-60) was use to study crystal structure. Atomic force microscopy (AFM) was used for investigate the morphology and roughness of surface, optical properties was studied by UV-Visible spectrophotometer (Shimadzu).

Thin film	SnO2
Substrate	Glass , Si
Temperature (⁰ C)	350-500
N2 gas flow rate	2L/min
SnCl ₂ 2H2O	2g
CH ₃ OH	20 ml
HF	10%

Table (2) Deposition parameters of tin oxide film

Eng. & Tech. Journal, Vol. 32, Part (B), No.4, 2014

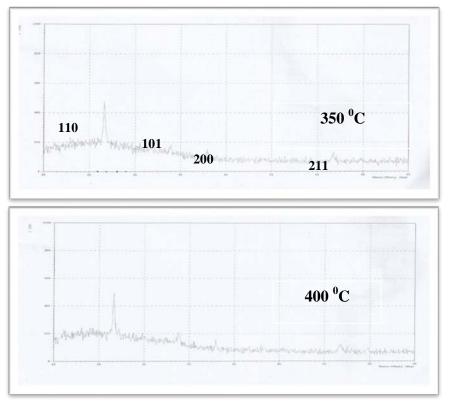

SnCl2H2O+CH3OH precursor inside oven

Figure (2) Schematic diagram of HPCVD system.

RESULTS AND DISCUSSION Structural properties

Structural properties

XRD measurement were made to SnO2 films deposited on glass substrate are shown in Figure (3). It's clear that there are four X-ray diffraction patterns (110), (101),(200),(211) at various temperature $(350-450)^{0}$ C ,the max. Peak at 20 values of 26.6° is (110). The results show that at a temp of $(500)^{0}$ C there are more than five peaks this improvement for crystalline structure . A matching of the observed and standard (hkl) planes confirmed that the product is of SnO2 having a tetragonal structure.

804

Eng. & Tech. Journal, Vol. 32, Part (B), No.4, 2014

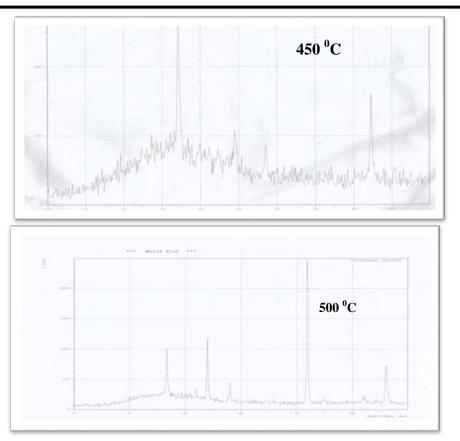
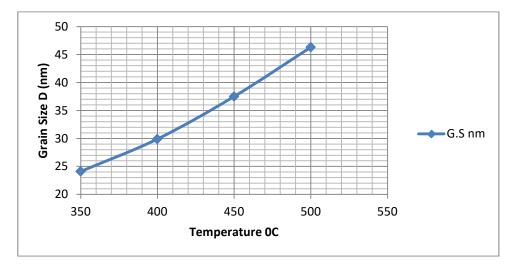



Figure (3) The XRD pattern of the SnO₂ film prepared at various substrate temperature (350-500 ⁰C).

It was noted that the grain particle size became larger with temperature increase for SnO_2 film as shown in Figure (4).

Figure(4) SnO2 thin film grain size deposit on glass substrate variation with temperature.

Figure(5) shows XRD pattern for SnO2 film on Si (n-type) in deposition temperature (490 0C), the measurement show that there is only two peaks observed.

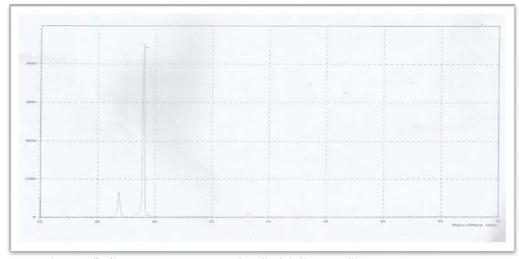


Figure (5) Shows XRD pattern for SnO2 film on Si (n-type) substrate.

OPTICAL PROPERTIES

 SnO_2 thin film deposited on to glass substrate by using wet chemistry results refer to have a bright yellow thin film with high quality and were very transparent. The optical transmission of the samples is investigated in the range of 280 to 1100nm using UV-VIS spectrophotometer as shown in Figure (6). The measurements are taken in the wavelength scanning mode for normal incidence with max. transmittance about (94%) at 400 $^{\circ}$ C. It is noted that the average permeability of Tin Oxide films be high for each temperature at a higher rate (80%), and this is proof that we get visually permeable membranes with excellent quality possible to use different applications such as poles transparent or other.

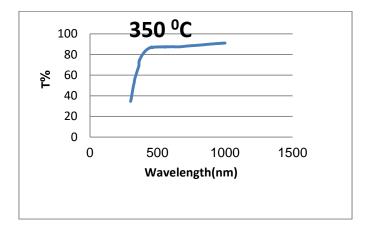
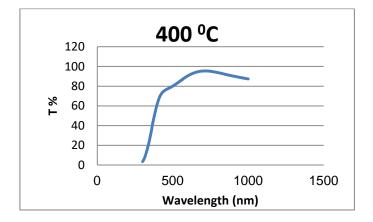
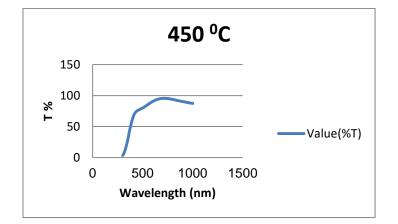




Figure (6) To be Continued

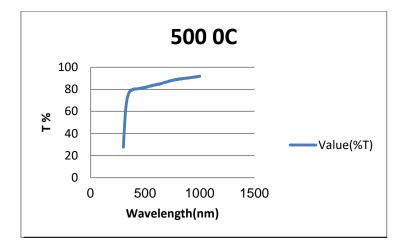


Figure (6) Transmittance and absorbance spectrum for SnO₂ films for various substrate temperatures.

MORPHOLOGY OF THE TINE OXIDES SURFACE STRUCTURE

Atomic force microscopy (AFM) was used to study the morphology of SnO₂ thin films deposit by (HPCVD) as shown in Figure(7) in (2D) and (3D). The results show that the roughness and rout mean square of tine oxides surface increase with substrate temperature increase this measurements agree with X-Ray diffraction results, that there is large change in the structure state of SnO2 thin film by changing temperature parameter . The surface topography and surface roughness will change with all temperature AFM images show, thin layers consist of isolated islands, it grow with temperature this is obvious in (2D) and (3D) images.

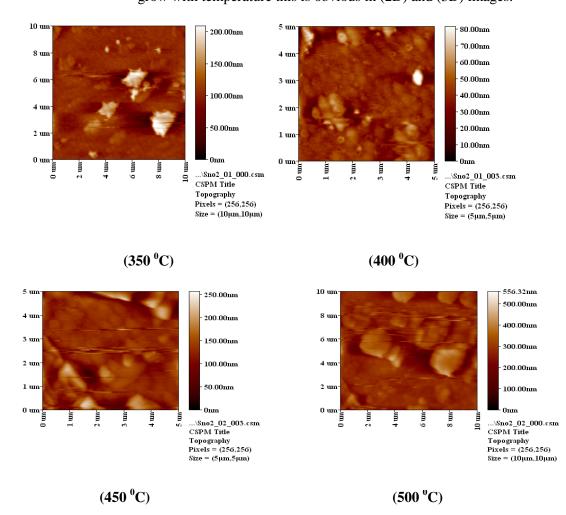
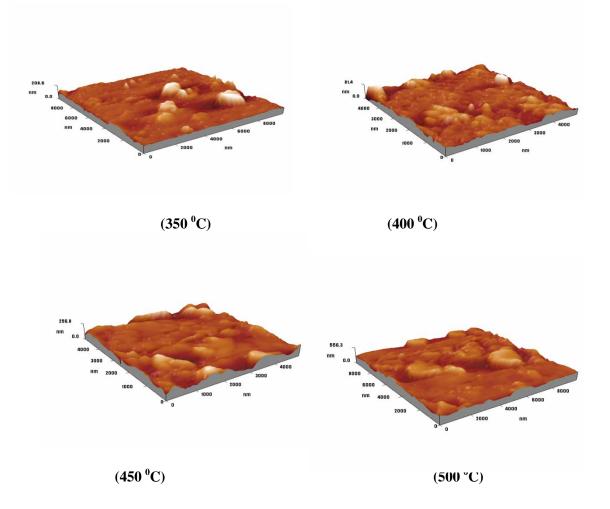



Figure (7)Atomic force microscopy(AFM) of Sno2 thin films deposit by (HPCVD in (2D).

Figure (8) Atomic force microscopy (AFM) of Sno2 thin films deposit by (HPCVD in (3D).

Table (3) show AFM data that we gate each measurement form surface morphology of SnO_2 thin films images.

Table (5) AFWI measurement for unrerent temperature.									
Temperatur	Roughnes	Rout	Surface	Surface	Peak-	Grain			
e	s average	mean	Skewnes	Kurtosi	Peak	Size			
$(T^{0}C)$	(sa)nm	square(sq	S	S	(sy)n	(g.s)n			
)	(Ssk)	(Sku)	m	m			
		nm							
350	5.87	8.37	0.477	6.2	81.4	24.1			
400	13.9	23.4	0.945	7.89	197	29.95			
450	18.9	26.9	0.0146	4.71	223	37.5			
500	34.5	48.4	-0.121	4.3	358	46.3			

Table (3) AFM measurement for different temperature.

CONCLUSIONS

Tin oxide thin film have been successfully deposited at glass substrate by using HPCVD method. Structural investigations using .XRD reveal that the layers are composed of SnO2_, grain size was (24-46.6) nm measured by Scherrer equation. The results show that at a different temp. There are more than five peaks this improvement for crystalline structure Max. Transmittance was 94% in a visible light spectrum, the average roughness of thin film surface is about(5.3 nm). The results show that the roughness and rout mean square of tine oxides surface increase with substrate temperature increase.

REFERENCES

- Vasiliev, R. B. M. N. Rumyantseva, S. E. Podguzova, A.S. Ryzhikov, L. I. Ryabova, and A. M. Gaskov, "Effect of interdiffusion on electrical and gas sensor Properties of CuO/SnO2 heterostructure," Materials Science and Engineering B, vol. 57, no. 3, pp. 241–246, 1999.
- [2]. Wager, J. F. "Transparent electronics," *Science*, vol. 300, no. 5623, pp. 1245– 1246, 2013.
- [3]. Jarzebski and J. P. Marton. Z. M. Physical properties of SnO2 materials. 1.– Preparation and defect structure. Journal of the Electrochemical Society, 123 (7), C199–C205 (1976).
- [4]. Greenwood and A. Earnshaw. N. N. Chemistry of the elements. Butterworth-Heinemann,2nd edition (1997).
- [5]. Batzill and U. Diebold. M. The surface and materials science of tin oxide. Progress in Surface Science, **79** (2–4), 47–154 (November 2005).
- [6]. Harrison, P. G. C. Bailey, and W. Azelee. Modified tin (IV) oxide (M/SnO2, M = Cr, La, Pr, Nd, Sm, Gd) catalysts for the oxidation of carbon monoxide and Propane. Journal of Catalysis,**186** (1), 147–159 (August 1999).
- [7]. van Mol, A. M. B. Y. Chae, A. H. McDaniel, and M. D. Allendorf. Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films, **502** (1-2), 72–78 (April 2006).
- [8]. Granqvist. C. G. Transparent conductors as solar energy materials: A panoramic review.Solar Energy Materials and Solar Cells, **91** (17), 1529–1598 (October 2007).
- [9]. Gordon.R. Chemical vapor deposition of coatings on glass. Journal of Non-Crystalline Solids, **218**, 81–91 (September 2007).
- [10]. Göpel and K. D. Schierbaum. W. SnO2 sensors: Current status and future prospects. Sensors and Actuators B: Chemical, **26** (1–3), 1–12 (May 1995).
- [11]. Barsan, N. M. Schweizer-Berberich, and W. Göpel. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius' Journal of Analytical Chemistry, 365 (4), 287–304 (October 1999).
- [12]. Haynes, W. M. editor. CRC handbook of chemistry and physics. CRC, 93rd edition (2012).
- [13]. J. Mater Synthesis and characterization of nanostructure SnO2 film Sci: Material in Electronics, 22:pp.1681-1684 (2011)(nano technology center).