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ABSTRACT

The objective of this study is to compare the performance of some Bayesian
estimators for the shape parameter of the exponential distribution. We considered
three priors: the extension of Jeffreys as non- informative prior information, as well
as the inverted gamma conjugate prior and the inverted chi square prior as
informative prior information's. Bayes estimators have been obtained under
symmetric and asymmetric loss functions :the quadratic loss function QLF and the
general entropy loss function GELF, which is a modified version of the linear
exponential loss function loss function LINEX. The comparison of Bayes estimators
was made through a Monte Carlo simulation study on the performance of these
estimators with respect to the mean square error MSE as a measure of performance.

The results of comparison showed that Bayes estimators of the shape parameter
under the GELF with proper choice of vy, is a suitable alternative to the QLF when the
loss is asymmetric in nature. Comparison also show that the informative priors
performed better than the non-informative prior. Accordingly; if adequate
information is available about the parameters it is preferable to use conjugate
informative priors, otherwise the extension of Jeffreys prior gives quite reasonable
results.

Keywords: Exponential Distribution, Bayes Estimators, Non-Informative and
Informative Priors, Conjugate Prior, Quadratic and General Entropy Loss Functions.
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INTRODUCTION
he exponential distribution is one of the most popular distributions of failure
time and life testing and reliability theory. Specifically, lifetime in the
engineering sciences was nearly always modeled by the exponential
distribution [7].

The Baysian approach has a lot of advantages in comparison with the classical
approach; it can utilize the information in a formal way, satisfies the axioms of
coherence and utilize decision theory [9].It is well known that, for Bayes estimators,
the performance depend on the form of the prior distribution and the loss function
assumed [8].Al-Kutubi H. S. and Ibrahim, N. A. (2009) studied the extension of
Jeffreys prior information with square error loss function in exponential distribution
[1].Al-Omari, M. A. (2010) also applied the same extension on Weibull
distribution[2].Dey, S. (2010) obtained Bayes estimators of the shape parameter for
the generalized exponential distribution based on a class of non-informative priors
under the assumption of quadratic loss function QLF, squared log- error loss function
SLELF, and general entropy loss function GELF[4]. Yarmohammadi, M. and Pazira,
H. (2010) obtained Bayesian and non-Bayesian estimators for the shape parameter,
reliability and failure rate functions of the generalized exponential distribution. Those
estimators are obtained using symmetric and asymmetric loss functions [12].Also
Dey, S. and Maiti, S. (2011) derived Bayes estimators of the shape parameter of
exponentiated family distribution by considering extension of Jeffreys non-
informative prior as well as conjugate priors under different scale-invariant loss
functions [5].A comparison of priors made by Taher, M. and Saleem, M. (2011)
showed that the informative priors are more advantageous than the non-informative
priors[9].

The main aim of this paper is to obtain Bayes estimators of the exponential
distribution and compare their performances under quadratic loss function which is
symmetric and the general entropy loss function which is asymmetric. Here we use
the extension of Jeffreys as a non-informative prior, the inverted gamma as a natural
conjugate prior, and the inverted Chi square which is another form of the inverted
gamma distribution as an informative prior. Comparison was made through a Monte
Carlo simulation study on the performance of these estimators. The results are
summarized in tables and followed by the conclusions.

The Model

Let t;, t, ..., t, be independent identically distributed lifetimes from exponential
distribution with an unknown parameter 6. The probability density function is given
by:[1]

f(t.6) =g exp|—3] 0<t<o; >0 . (D)

The cumulative distribution function (cdf) is given by:
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t
F(t,0) =1—exp (—5)
The likelihood function for the exponential pdf is given by:

L(t;;0) = (g)n exp —Z?:Tlti] .. (2

PRIOR DISTRIBUTIONS

The quality of Bayes estimators requires appropriate choice of priors for the
parameter. If we have enough information about the parameter, then it is better to use
the informative priors. Otherwise we may resort to use non-informative priors “!. The
parameters of the prior distribution are called hyper parameters. All the hyper
parameters are assumed to be known and non-negative. In this paper we consider
both types of priors: the extension of Jeffreys as a non- informative prior and the
inverted gamma and the inverted chi square as informative priors.
1. The extension of Jeffreys prior proposed by Al-Kutubi H. S. and Ibrahim, N. A.
(2009) [1] is given as

ne
g2c ’

m(0) =k ¢ >0, and k is a constant. .. (3

2. The inverted gamma prior distribution with hyper parameters o and f.
This conjugate prior distribution is the distribution of the reciprocal of a variable
distributed according to the gamma distribution. It is given as

_B
m,(0) =222 a,5,0>0. .. (4

(a) ga+1’

3. The inverted Chi square prior distribution with hyper parameters o and B. This
distribution is the distribution of a random variable whose reciprocal divided by its
degrees of freedom is a Chi square distribution. It is given as [9]

m3(0) =

B
a/2 ,7 29
B e . aB8>0. ... (5)

() o

LOSS FUNCTIONS

A loss function is used to represent a penalty associated with each estimate. The
loss should be zero if and only if & = 6. In most cases, the squared error loss
function, which is symmetrical, is frequently used by researchers. Its use is very
popular because of its mathematical simplicity. The symmetric nature of the squared
error loss function gives equal weight to over and under estimation of the parameters
1% However asymmetric loss functions have been shown to be functional. A useful
asymmetric loss function is the linear-exponential (LINEX) loss function, introduced
by Varian (1975) ™. This loss function behaves linearly for large underestimation
errors, in which the exponential term vanishes, and exponentially for large
overestimation errors, in which case the exponential tern dominates. With the above
priors, we applied the following two loss functions
1. The quadratic loss function (QLF)
It is given by: [4]
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N2
L.(6,6) = (%) , Where § is a decision rule to estimate 6.

For the posterior distribution 4(8|t), o is to be chosen such that

o0 - 2 - - .
Js (975) h(@|t) dO is minimum.

This can be equivalently written as

fow(é) —68)2q(8|t)da , with q(8|t) = eiz h(O|t) is minimum. Here 6 = E(O|t).
Bayes' estimator for the parameter 8 of the exponential distribution under quadratic
loss function may be given as

A Il gh®lt)as

Iy 5z h(O1t) a6

.. (6)

2- The general entropy loss function (GELF)

This loss function is a particular type of asymmetric loss functions which is
proposed by Calabria and Pulcini (1996) &. It is a suitable alternative to the modified
linear exponential (MLINEX) loss functionand is given by:

5\ o
L2(6,8)=W[(5) —yln(;)—l];yqto, w>0
Whose minimum occurs at 6 = 6. Without loss of generality we assume that w = 1.
Bayes' estimator for the parameter 8 of the exponential distribution under general
entropy loss function may be given as

7] =wwﬁmr% .. (7

BAYESIAN ESTIMATION
To obtain Bayes estimators, we assume that ¢ is a real valued random variable
with probability density function (). The posterior distribution of 4 is the
conditional probability density function of 6 given the data. In this section we
consider Bayes estimation of the unknown parameter & based on the above mentioned
priors and loss functions.
i) Extension of Jeffreys' prior information, under quadratic loss function
Combining the prior distribution in (3) and the likelihood function (2), the posterior
distribution for the parameter 6 given the data (ty, t,... t,) is derived as follows:

Lt e
h(9 | t) = H?=1f(t|9)7'[1(9) _ Q_Tl 0 5
fin?:1f(t|9)n1(9)d9 i _Zin:—lti

fo € 8 g—n—2c 4@

Let
ot
y =t
Then
yn+2c oY

h(o|t) =

-yt f(;’oyn+2c—2 ey dy
And the posterior distribution become as follows:
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n
n+2c-1 _Zizlti
U e

_(Z{Ll &
772 T(n120-1) ... (8)

h(@|t) =

According to the quadratic loss function, the corresponding Bayes' estimator of
the parameter 6 is derived by substituting the posterior distribution (8) in the
numerator of (6), as follows:

(Zn t )]’1+2C—1 —Enlt,
©l _ \&i=1h 0 ) n—2c—1 i=1ti
fo 6 h(8]t) db = T(n+2c—1) fo 6 e ¢ db
Let

_ Xkt
Y="7%
Then

nt+2c-1 % n+2c+1

f — h(0]|t) d6 = —(Zfati ) e—y( ny > 2121 dy

o 0 In+2c—1) Yoot y
Then

1 * t; F n+ 2c
f by h(9|t) do = (2:1—1) e Y yTl+ZC 1 d (Z =1 ) ( )
0o 0 r(n+2c-1)J, I'n+2c—1)
In the same manner the denominator of (6) become as follows

1 (Z?:l ti)_z I'n+2c+1)

— h(8]|t) df =

foé’z ®15) T(n+2c—1)
Hence,

=2 .9

n+2c

ii) Extension of Jeffreys' prior information, under the general entropy loss
function

According to the general entropy loss function, the corresponding Bayes'
estimator for the parameter 6 is derived by substituting the posterior distribution (8)
in (7), as follows:

E@77|t) =f9_7’h(9|t)d9

0

n+2c-1 n
_ _(Zl 1bi ) g—n-2c-y e_ igl 2 do
I'h+2c—-1) J,

Let

— Z?=1 ti

T8
Then

n+2c-1 © -n-2c-y
E(e—ylt) — (Zl 1 i ) f ?21 ti e_y - Z?:l ti dy
I'n+2c—-1) J, y y?
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¥ w -y
_ (Z‘anl tl ) e_y yn+2c+y—2 dy — (Z‘anl tl ) r(n + 2C + y - 1)

_F(n+2c—1)0 I'n+2c—1)
Hence,
1
-1 Yot _yF(n+20+y—1) 14
[E@TID] Y = <( = Ll“)(n +2c—1)
1
A _ wn ) '(n+2c-1) \y
0, = Zi:l L (F(n+2c+y—1)) (10)

iii) Inverted Gamma prior information, under quadratic loss function
Combining the prior distribution in (4) and the likelihood function (2), the posterior
distribution for the parameter 8 given the data (ty, t, ..., tn) is derived as follows:

(Eln=19ti +B) g—n—a-1

[Tie, £ (ti16)m2(6) e’
h(f |t) = =2 =
( | ) Jo Miz, £ (10w (6)a6 . _(Z?thi +8) g-n-a-1
o € 0 do

Let y = —Ei=1;i +ﬁ ,
Then

yn+oc+1 ey
h(olt) = n ©ynto—1 a—

-CLit +B v eV dy
(2{1=1ti +B)

(Z?:lti +B)n+a o 5

e]’l+(1+1 F(n+a)

.. (1)

Now, according to the quadratic loss function, the corresponding Bayes'
estimator for the parameter @ is derived by substituting the posterior distribution (11)
in the numerator of (6), as follows:

“1 e ORI () L —(Ek, ti+B)
J 5 h(@lt) b = Qiz1 b + ) J gn-a-2 g g do
0 0

I'lh+ o)
Let
S ti+B
y = Eatct)
Then

1 RGBT 4 BT (O b+ )
e e
QL+ ) T(n+a+1)
- I'n+a)

In the same manner the denominator of (6) become as follows

L, ti+ ) T(n+a+2)
I'n+a)

© 1
J 52 h(610) do =
0
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Hence,

Zimy ti+h .. (12)

n+a+1

D)y

3=

iv) Inverted Gamma prior information, under the general entropy loss function

According to the general entropy loss function, the corresponding Bayes' estimator
for the parameter @ is derived by substituting the posterior distribution (11) in (7), as
follows:

_(E{I:ﬁi +ﬁ)n+u -(ERat +8)

E@7) = =5 Jpomert em e de

Let

B

n
i=1tits

0
Then

E©@77|t)

iy 4B I BT (St +B)
B I'n+a) J;) < y ) e 2 dy

Hence,

-1
Y

P (.t +,8)_y1“(n+a+y)

Hence,

1
I'(n+a)

~ _ n ;
O, = Qicati +B) (—F(n+a+y)) .. (13)

It is interesting to note that equation (13) is a special case of equation (10) if we
setf=0,a=2c1andy=1.

V) Inverted Chi square prior information, under quadratic loss function

Combining the prior distribution in (5) and the likelihood function (2), the
posterior distribution for the parameter 8 given the data (ty, t,... t,) is derived as
follows:

(2:.1:1 t; +§> —-2n—a-2

B [) = Al GOmO T o

Jy TIL, £ (£:10)m3(8)do (st +5) -2n-a-2

e e % % ag

Let

XLt +§

==z,

then
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2n+o+2
yT e VY
B o 2nto=2
—Qit vy eV dy
amve (3R, +5)
(ot T

2n+a+2
— r(2n2+0t)

Now, according to the quadratic loss function, the corresponding Bayes' estimator
for the parameter 6 is derived by substituting the posterior distribution (14) in the
numerator of (6), as follows:

2n+a n B
Eﬁ1ﬁ+ﬁ) 2 —2n—a—4 '(Zh1Q+E>
= 2

f:’% h(0|t) do = _( f(;”e 2 e ] deo

h@|t) =

.. (14)

l_,(2n2+u)
Let
n B
_ ( i=1 ti+;)
Y= 0
Then
1
J — h(0]|t) d6
0 9
2n+a —n—a—4
2 0 5
_< ?=1t"+§) ?:1%“*‘% _( ?=1ti+§)
- 2n+a f e y 32 dy
eIk
- 2n+a+2
(2t v§) Tt
- 2n+a
(=)
In the same manner the denominator of (6) become as follows
-2
2n+a+4
-1 (Sra+f) (Y
J — h(0|t) df =
o 0 r (Zn + a)
2
Hence,
0= Eet ... (15)

vi) Inverted Chi square prior information, under the general entropy loss
function

According to the general entropy loss function, the corresponding Bayes estimator
for the parameter 6 is derived by substituting the posterior distribution (14) in (7), as
follows:
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e )

E(Q_YIt) = T fooH 2 e 0 do
ree) e
Let
?:1ti+§

===z
Then
E@7Y|t

( 2 5 2n+a —2n—a—2y—2 8

2 2
IR ey (e )
B r (210 fo y ¢ y2 y
2

And after few steps

Vo 2n+a+2 y
[l e

_1 2
E[@7YD] 7Y = T
r (%7
Hence,
8 =( n t.+£)<ﬂ>; (16)
6 i=1% 2 1_(zn+¢zz+2y)

SIMULATION AND RESULTS

In order to investigate the performance of the estimators obtained in the above
section, a simulation study is conducted. Samples of size n= 25, 50 and 100 are
generated from the exponential distribution with two values of 8 (¢ = 0.5, 1). Four
values for the extension of Jeffreys parameter (c = 0.5, 1, 1.5, 2), and the following
pairs of values of the hyper parameters « and $ are chosen {(o, ) = (1, 0.5), (2, 1), (5,
1)}. Four values for the GELF parameter y are chosen as (y = 1, -1, 2, -2). The
number of replication used was R=1000, and the mean of the estimated values for the
parameter ¢ is obtained along with its mean square error (MSE) to compare the
efficiency of the estimators , where

~  yleoop ~
u(@) ===—,  and MSE (9) =

iR°(Bi-6)”
R

The results of the simulation study are summarized and tabulated in tables 1-3 for
each estimator and for all sample sizes.
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Table (1) the mean of Bayes estimators and MSE with the extension of Jeffreys

prior under QLF (8,) and GELF(8,).

0=0.5,¢c=0.5
" B
n Criteria (CH) (52)
y=-2 v=- Y= v=2
25 Mean 4835 .5350 5237 .5028 4931
MSE .0101 0133 0121 .0106 .0103
50 Mean 4924 5178 5124 .5022 4973
MSE .0051 .0059 .0056 .0053 .0052
Mean 4950 .5076 .5050 .5000 4975
100
MSE .0026 .0028 .0028 .0027 .0027
0=0.5,c=1
" B
n Criteria (CH) (52)
=-2 =-1 Y= y=2
25 Mean .4656 5123 .5028 4835 4744
MSE .0103 0112 .0106 .0101 .0101
50 Mean 4829 5073 .5022 4924 4876
MSE .0052 .0054 .0053 .0051 .0051
Mean 4901 .5025 .5000 .4950 4925
100
MSE .0027 .0027 .0027 .0026 .0027
0=0.5c=2
" B
n Criteria (CH) (52)
y=- y=- Y= y=2
25 Mean 4337 4744 .4656 4489 4411
MSE .0123 0101 .0103 .0111 .0117
50 Mean 4650 4876 4829 4738 4694
MSE .0057 .0051 .0052 .0054 .0055
Mean 4807 4926 4902 4854 4831
100
MSE .0028 .0027 .0027 .0027 .0028
0=1,¢c=0.5
" B
n Criteria (CH) (52)
y=- y=- Y= y=2
25 Mean 9670 1.0701 1.0475 1.0056 .9861
MSE .0404 .0531 .0484 .0426 .0411
50 Mean .9848 1.0356 1.0250 1.0045 .9946
MSE .0205 0237 .0226 .0211 .0207
Mean 9900 1.0152 1.0100 .9999 .9950
100
MSE 0106 0113 .0110 .0107 .0106
0=1,c=1.5
" B
n Criteria (CH) (52)
y=-2 y=-1 y= y=2
25 Mean .8979 .9861 9670 9311 9144
MSE .0444 0411 .0404 .0412 .0425
50 Mean 9476 .9946 .9848 .9658 .9567
MSE .0215 .0207 .0205 .0207 .0210
Mean 9708 9950 9900 .9803 .9756
100
MSE 0109 0106 0106 .0107 .0108
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Table (2) the mean of Bayes estimators and MSE with inverted gamma prior under QLF
(85) and GELF(8,).

0=05a=1,p=0.5
. [}
n Criteria (8s) (®.)
y=-2 y=-1 y=1 y=2
- Mean 4841 4933 5027 4838 5228
MSE .0094 .0095 .0098 .0097 0111
50 Mean 4925 4973 5022 4924 5122
MSE .0049 .0050 .0051 .0050 .0054
100 Mean 4951 4975 .5000 4950 5050
MSE 0.0026 .0026 .0026 .0026 .0027
0=050=2p=1
. 8
n Criteria (8s) (®.)
y=-2 y=-1 y=1 y=2
- Mean 4846 4936 5026 4841 5219
MSE .0087 .0088 .0091 .0094 .0103
5 Mean 4927 4974 5021 4925 5120
MSE .0047 .0048 .0049 .0049 .0052
100 Mean 4951 4975 .5000 4951 5049
MSE .0025 .0026 .0026 .0026 .0026
0=050=5p=1
~ [}
n Criteria (8s) (®.)
y=-2 y=- y= =2
- Mean 4378 4450 4523 4586 4679
MSE .0108 0101 .097 .0099 .0089
50 Mean 4662 4705 4747 4787 4835
MSE .0053 .0051 .0050 .0051 .0048
100 Mean 4811 4834 4857 4879 4904
MSE .0027 .0027 .0026 .0026 .0026
0=1,a=2,p=1
~ 8
n Criteria () (6.
y=-2 y=-1 y=1 y=2
- Mean .9336 .9507 .9682 .9497 1.0054
MSE .0383 376 .0375 .0390 .0394
50 Mean .9665 9757 .9851 .9754 1.0044
MSE .0199 0197 .0197 .0201 .0203
100 Mean .9805 .9853 .9901 .9852 .9999
MSE .0105 .0106 .0105 .0104 .0104
0=1,a=5p=1
~ 8
n Criteria () (®.)
y=-2 y=- y= y=
- Mean 8432 8572 8714 .8997 .9014
MSE .0523 .0490 .0461 .0428 .0414
5 Mean .9147 9230 9313 .9481 .9486
MSE .0241 .0230 0221 0211 .0207
100 Mean .9528 9573 .9618 9710 9711
MSE .0118 0114 0112 .0108 .0107
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Table (3) The mean of Bayes estimators and MSE with inverted Chi square
prior under QLF (85) and GELF(8).

0=050a=1,p=05
n Criteria (®s) ()
y=-2 y=-1 y=1 y=2
Mean 5336 .5343 5233 5028 4932
2 MSE 0122 0127 0116 .0102 .0099
Mean 5174 5176 5123 5022 4973
>0 MSE .0057 .0058 .0055 .0052 .0051
Mean 5075 .5075 5050 .5000 4975
100 MSE .0028 .0028 .0027 .0027 .0026
0=050a=2p=1
n Criteria (@) ()
y=-2 y=-1 Y= v=2
- Mean 5323 .5336 5228 5027 4933
MSE 0113 0122 0112 .0098 .0095
50 Mean 5171 5174 5122 5022 4973
MSE .0055 .0057 .0054 .0051 .0050
100 Mean 5074 5075 5050 5000 4975
MSE .0027 .0028 .0027 .0026 .0026
0=050a=5p=1
n Criteria (®s) ()
y=-2 y=-1 Y= Y=
- Mean 4762 .5028 4932 4753 4669
MSE .0088 .0099 .0095 .0094 .0096
50 Mean 4881 5022 4973 4878 4832
MSE .0047 .0051 .0050 .0049 .0050
100 Mean 4927 .5000 4975 4927 4903
MSE .0025 .0026 .0026 .0026 .0026
0=1,a=2p=1
n Criteria (®s) ()
y=-2 y=-1 y=1 y=2
- Mean 1.0253 1.0468 1.0256 .9862 9678
MSE 0416 .0465 0432 .0395 .0389
50 Mean 1.0144 1.0248 1.0145 .9946 .9850
MSE .0209 0221 0213 .0203 .0201
100 Mean 1.0049 1.0100 1.0049 .9950 .9901
MSE .0106 .0109 .0107 .0105 .0105
0=1,a=5p=1
n Criteria (@) ()
v=-2 v=-1 Y= v=2
- Mean 9174 .9864 9676 9324 9159
MSE .0396 .0396 .0389 .0398 0410
50 Mean 9575 .9946 .9849 9661 9571
MSE .0202 .0203 .0201 .0203 .0206
Mean 9758 .9950 .9901 .9804 9757
100 MSE .0106 .0105 .0105 .0106 .0107
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DISCUSSION
The results of this study are stated in the following points:
The effect of prior information parameters
It is noted that Bayes estimators based on the extension of Jeffreys prior

information are generally underestimated with the increase of c. The extent of
underestimation is higher for small n. On the other hand the estimates of the
parameter based on both the inverted gamma and the inverted chi square priors are
observed to be underestimated with the increase of ¢ and the hyper parameter «. The
extent of underestimation is higher in the case of small n. In general Bayes estimator
based on the inverted gamma prior is the best when the hyper parameters o and f are
close.
The effect of loss function

Comparison with respect to loss functions shows that Bayes estimators of the
parameter 8 under GELF are better than QLF for certain values of y and depending on
the values of the prior parameters. From table 1 we can easily observe that results are
better with positive y and small c. Positive y is also better in tables 2 and 3 except the
cases when a = 5 and = I, were estimators with negative y are better. Under both
the QLF and GELF with negative y we can observe that the parameters are
overestimated with the inverted chi square prior with small « and #, and the extent of
overestimation is higher when n is small.
The effect of sample size

It is apparent from Tables (1-3) that MSE of all the estimators decreases notably
as the sample size increases.

Finally; and after an extensive study of the results, we suggest the use of the
GELF with proper choice of vy, as a suitable alternative of the QLF when the loss is
asymmetric in nature. The comparison of the informative and non-informative priors
shows that informative prior performs better than non-informative prior. Accordingly;
if adequate information is available about the parameters it is preferable to use
conjugate informative priors, otherwise the extension of Jeffreys’ prior gives quite
reasonable results.
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