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ABSTRACT 
     The objective of this study is to compare the performance of some Bayesian 
estimators for the shape parameter of the exponential distribution.  We considered 
three priors: the extension of Jeffreys as non- informative prior information, as well 
as the inverted gamma conjugate prior and the inverted chi square prior as 
informative prior information's. Bayes estimators have been obtained under 
symmetric and asymmetric loss functions :the quadratic loss function QLF and the 
general entropy loss function GELF, which is a modified version of the linear 
exponential loss function loss function LINEX. The comparison of Bayes estimators 
was made through a Monte Carlo simulation study on the performance of these 
estimators with respect to the mean square error MSE as a measure of performance. 
      The results of comparison showed that Bayes estimators of the shape parameter 
under the GELF with proper choice of γ, is a suitable alternative to the QLF when the 
loss is asymmetric in nature. Comparison also show that the informative priors 
performed better than the non-informative prior. Accordingly; if adequate 
information is available about the parameters it is preferable to use conjugate 
informative priors, otherwise the extension of Jeffreys prior gives quite reasonable 
results. 
 
Keywords: Exponential Distribution, Bayes Estimators, Non-Informative and 
Informative Priors, Conjugate Prior, Quadratic and General Entropy Loss Functions.      
 
 

 یز لمعلمة التوزیع الاسي باستخدام دوال خسارة متماثلة وغیر متماثلةاتقدیرات ب
        

 خلاصةال
یھدف البحث الى مقارت�ة اداء مجموع�ة م�ن مق�درات بی�ز لمعلم�ة الش�كل ف�ي التوزی�ع الاس�ي. أخ�ذنا      

دال�ة جیفری�ز الاولی�ة الموس�عة  كدال�ة لامعلوماتی�ة فض�لا ع�ن  :بالأعتبار ثلاثة دوال أولیة وھي بالتحدید
وفق�ا ل�دالتي خس�ارة  دالتي معكوس كاما و معكوس مربع ك�اي المعلوم�اتیتین. ت�م اس�تخراج مق�درات بی�ز

 GELFودال��ة خس��ارة اخ��رى ت��دعى (QLF)متماثل��ة و غی��ر متماثل��ة وھم��ا: دال��ة الخس��ارة التربیعی��ة 
(General Entropy Loss Function)  الخطی��ة  -وھ��ي ص��یغة معدل��ة م��ن دال��ة الخس��ارة الاس��یة

)LINEXھذه المق�درات یز من خلال اسلوب مونت كارلو للمحاكاة حول اداء ا). تمت مقارنة مقدرات ب
 كمعیار للمقارنة. MSE)باستخدام متوسط مربعات الخطأ ( 
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عن�د ق�یم  (GELF)لمعلمة الشكل المستندة على دال�ة خس�ارة  أظھرت نتائج المقارنة أن مقدرات بیز     
تعد بدیلا مناسبا لدالة الخسارة التربیعیة عندما تكون الخس�ارة ذات طبیع�ة غی�ر متماثل�ة  γمعینة للمعلمة 

.أظھرت المقارنة كذلك أن الدوال الاولیة المعلوماتیة كان أداءھا أفضل من الدالة الأولی�ة اللامعلوماتی�ة. 
بموجب ذلك, اذا ما توفرت لدینا معلومات عن التوزیع الاولي للمعلمة یكون من الافض�ل اس�تخدام دوال 

 لیة الجودة.اولیة معلوماتیة, وخلاف ذلك فإن دالة جیفریز الموسعة أعطت نتائج عا
 
INTRODUCTION 

he exponential distribution is one of the most popular distributions of failure 
time and life testing and reliability theory. Specifically, lifetime in the 
engineering sciences was nearly always modeled by the exponential 

distribution [7]. 
The Baysian approach has a lot of advantages in comparison with the classical 

approach; it can utilize the information in a formal way, satisfies the axioms of 
coherence and utilize decision theory [9].It is well known that, for Bayes estimators, 
the performance depend on the form of the prior distribution and the loss function 
assumed [8].Al-Kutubi H. S. and Ibrahim, N. A. (2009) studied the extension of 
Jeffreys prior information with square error loss function in exponential distribution 
[1].Al-Omari, M. A. (2010) also applied the same extension on Weibull 
distribution[2].Dey, S. (2010) obtained Bayes estimators of the shape parameter for 
the generalized exponential distribution based on a class of non-informative priors 
under the assumption of quadratic loss function QLF, squared log- error loss function 
SLELF, and general entropy loss function GELF[4]. Yarmohammadi, M. and Pazira, 
H. (2010) obtained Bayesian and non-Bayesian estimators for the shape parameter, 
reliability and failure rate functions of the generalized exponential distribution. Those 
estimators are obtained using symmetric and asymmetric loss functions [12].Also 
Dey, S. and Maiti, S. (2011) derived Bayes estimators of the shape parameter of 
exponentiated family distribution by considering extension of Jeffreys non-
informative prior as well as conjugate priors under different scale-invariant loss 
functions [5].A comparison of priors made by Taher, M. and Saleem, M. (2011) 
showed that the informative priors are more advantageous than the non-informative 
priors[9]. 

The main aim of this paper is to obtain Bayes estimators of the exponential 
distribution and compare their performances under quadratic loss function which is 
symmetric and the general entropy loss function which is asymmetric. Here we use 
the extension of Jeffreys as a non-informative prior, the inverted gamma as a natural 
conjugate prior, and the inverted Chi square which is another form of the inverted 
gamma distribution as an informative prior. Comparison was made through a Monte 
Carlo simulation study on the performance of these estimators. The results are 
summarized in tables and followed by the conclusions. 
The Model 
  Let t1, t2, …, tn be independent identically distributed lifetimes from exponential 
distribution with an unknown parameter θ. The probability density function is given 
by:[1]  

𝑓(𝑡,𝜃) = 1
𝜃
𝑒𝑥𝑝 �− 𝑡

𝜃
�             0 ≤ 𝑡 < ∞;  𝜃 > 0                                     …   (1) 

 
The cumulative distribution function (cdf) is given by: 

T 
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𝐹(𝑡,𝜃) = 1 − 𝑒𝑥𝑝 �−
𝑡
𝜃
�   

The likelihood function for the exponential pdf is given by: 
 

𝐿(𝑡𝑖;𝜃) =  �1
𝜃
�
𝑛
𝑒𝑥𝑝 �−∑ 𝑡𝑖

𝑛
𝑖=1
𝜃

�                                                                       … (2) 
 
PRIOR DISTRIBUTIONS 

The quality of Bayes estimators requires appropriate choice of priors for the 
parameter. If we have enough information about the parameter, then it is better to use 
the informative priors. Otherwise we may resort to use non-informative priors [4]. The 
parameters of the prior distribution are called hyper parameters. All the hyper 
parameters are assumed to be known and non-negative. In this paper we consider 
both types of priors: the extension of Jeffreys as a non- informative prior and the 
inverted gamma and the inverted chi square as informative priors. 
1. The extension of Jeffreys prior proposed by Al-Kutubi H. S. and Ibrahim, N. A. 
(2009) [1] is given as 
 
𝜋1(𝜃) = 𝑘 𝑛𝑐

𝜃2𝑐
 ;  𝑐 > 0,  and k is a constant.                                                       … (3) 

 
2. The inverted gamma prior distribution with hyper parameters α and β. 
     This conjugate prior distribution is the distribution of the reciprocal of a variable 
distributed according to the gamma distribution. It is given as [9] 

𝜋2(𝜃) = 𝛽𝛼  𝑒−
𝛽
𝜃

Γ(𝛼)  𝜃𝛼+1
 ;   𝛼,𝛽,𝜃 > 0.                                                                       … (4) 

 
3. The inverted Chi square prior distribution with hyper parameters α and β. This 
distribution is the distribution of a random variable whose reciprocal divided by its 
degrees of freedom is a Chi square distribution. It is given as [9] 

𝜋3(𝜃) = 𝛽𝛼/2  𝑒−
𝛽
2𝜃

Γ�𝛼2�  𝜃
𝛼
2+1

 ;   𝛼,𝛽,𝜃 > 0.                                                                       … (5) 

 
LOSS FUNCTIONS 
     A loss function is used to represent a penalty associated with each estimate. The 
loss should be zero if and only if 𝜃� = 𝜃. In most cases, the squared error loss 
function, which is symmetrical, is frequently used by researchers. Its use is very 
popular because of its mathematical simplicity. The symmetric nature of the squared 
error loss function gives equal weight to over and under estimation of the parameters 

[10].  However asymmetric loss functions have been shown to be functional. A useful 
asymmetric loss function is the linear-exponential (LINEX) loss function, introduced 
by Varian (1975) [11]. This loss function behaves linearly for large underestimation 
errors, in which the exponential term vanishes, and exponentially for large 
overestimation errors, in which case the exponential tern dominates. With the above 
priors, we applied the following two loss functions 
1. The quadratic loss function (QLF) 

It is given by: [4] 
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𝐿1(𝜃, 𝛿) = �𝜃−𝛿
𝜃
�
2

, Where δ is a decision rule to estimate θ.  
For the posterior distribution h(θ|t),  δ is to be chosen such that 

∫ �𝜃−𝛿
𝜃
�
2
ℎ(𝜃|𝒕)∞

0  𝑑𝜃   is minimum.  
This can be equivalently written as 
∫ (𝜃 − 𝛿)2𝑞(𝜃|𝒕)𝑑𝜃∞
0  , with 𝑞(𝜃|𝒕) = 1

𝜃2
 ℎ(𝜃|𝒕)  is minimum. Here 𝛿 = 𝐸(𝜃|𝒕).  

Bayes' estimator for the parameter θ of the exponential distribution under quadratic 
loss function may be given as 
 

 𝜃� =
∫ 1

𝜃 ℎ(𝜃|𝑡) 𝑑𝜃∞
0

∫ 1
𝜃2 ℎ(𝜃|𝑡) 𝑑𝜃∞

0
                                                                                           … (6) 

 
2- The general entropy loss function (GELF) 
     This loss function is a particular type of asymmetric loss functions which is 
proposed by Calabria and Pulcini (1996) [3]. It is a suitable alternative to the modified 
linear exponential (MLINEX) loss function and is given by: [4] 

𝐿2(𝜃, 𝛿) = 𝑤 ��
𝛿
𝜃
�
𝛾

− 𝛾 𝑙𝑛 �
𝛿
𝜃
� − 1� ;  𝛾 ≠ 0, 𝑤 > 0 

Whose minimum occurs at δ = θ. Without loss of generality we assume that w = 1. 
Bayes' estimator for the parameter θ of the exponential distribution under general 
entropy loss function may be given as 
 

𝜃� = [𝐸(𝜃−𝛾|𝒕)]−
1
𝛾                                                                                         …  (7) 

 
 BAYESIAN ESTIMATION 
     To obtain Bayes estimators, we assume that θ is a real valued random variable 
with probability density function π(θ). The posterior distribution of θ is the 
conditional probability density function of θ given the data. In this section we 
consider Bayes estimation of the unknown parameter θ based on the above mentioned 
priors and loss functions.  
i) Extension of Jeffreys' prior information, under quadratic loss function 
    Combining the prior distribution in (3) and the likelihood function (2), the posterior 
distribution for the parameter 𝜃 given the data (t1, t2… tn) is derived as follows: 
 

ℎ(𝜃│t) = ∏ 𝑓(𝑡|𝜃)𝑛
𝑖=1 𝜋1(𝜃)

∫ ∏ 𝑓(𝑡|𝜃)𝜋1(𝜃)𝑑𝜃𝑛
𝑖=1

∞
0

=     𝑒−
∑ 𝑡𝑖
𝑛
𝑖=1
𝜃             𝜃−𝑛−2𝑐                     

   ∫∞
0 𝑒−

∑ 𝑡𝑖
𝑛
𝑖=1
𝜃      𝜃−𝑛−2𝑐   𝑑𝜃

                                  

Let      

 𝑦 = ∑ 𝑡𝑖
𝑛
𝑖=1
𝜃

 , 
 Then 
 

ℎ(𝜃|𝒕) =
yn+2c   e−y

−∑ ti ∫ yn+2c−2  e−y∞
0   dyn

i=1
 

And the posterior distribution become as follows: 
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ℎ(𝜃|𝒕) =
−�∑ ti

n
i=1 �

n+2c−1
   e−

∑ ti
n
i=1

θ

θn+2c  Γ(n+2c−1)                                                                     … (8) 
 
      According to the quadratic loss function, the corresponding Bayes' estimator of 
the parameter θ is derived by substituting the posterior distribution (8) in the 
numerator of (6), as follows: 
 

∫ 1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃∞
0 =

−�∑ ti
n
i=1 �

n+2c−1
   

Γ(n+2c−1) ∫ 𝜃−𝑛−2𝑐−1∞
0   𝑒

−∑ 𝑡𝑖
𝑛
𝑖=1
𝜃  𝑑𝜃  

Let 

𝑦 = ∑ 𝑡𝑖
𝑛
𝑖=1
𝜃

  
Then  
 

�
1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=
−�∑ 𝑡𝑖𝑛

𝑖=1 �
𝑛+2𝑐−1

Γ(𝑛 + 2𝑐 − 1) � 𝑒−𝑦 �
𝑦

∑ 𝑡𝑖𝑛
𝑖=1

�
𝑛+2𝑐+1

   
∞

0

−∑ 𝑡𝑖𝑛
𝑖=1
𝑦2

   𝑑𝑦 

Then 
 

�
1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=

(∑ 𝑡𝑖 )𝑛
𝑖=1

−1

Γ(𝑛 + 2𝑐 − 1)� 𝑒−𝑦   𝑦𝑛+2𝑐−1 𝑑𝑦
∞

0
 =

(∑ 𝑡𝑖 )𝑛
𝑖=1

−1
Γ(𝑛 + 2𝑐)

Γ(𝑛 + 2𝑐 − 1)  

 
In the same manner the denominator of (6) become as follows 
 

�
1
𝜃2

 ℎ(𝜃|𝑡) 𝑑𝜃 =  
(∑ tin

i=1 )−2 Γ(𝑛 + 2𝑐 + 1)
Γ(𝑛 + 2𝑐 − 1)

∞

0
 

Hence,  

    𝜃�1 = ∑ 𝑡𝑖
𝑛
𝑖=1
𝑛+2𝑐

                                                                                     … (9)           
                                      
ii) Extension of Jeffreys' prior information, under the general entropy loss 
function 

According to the general entropy loss function, the corresponding Bayes' 
estimator for the parameter θ is derived by substituting the posterior distribution (8) 
in (7), as follows: 

𝐸(𝜃−𝛾|𝒕) = �𝜃−𝛾
∞

0

ℎ(𝜃|𝑡)𝑑𝜃 

=
−�∑ tin

i=1 �
n+2c−1

   
Γ(n + 2c − 1) � 𝜃−𝑛−2𝑐−𝛾

∞

0
  𝑒

−∑ 𝑡𝑖
𝑛
𝑖=1
𝜃  𝑑𝜃 

Let 
𝑦 = ∑ 𝑡𝑖𝑛

𝑖=1
𝜃

  
Then  

𝐸(𝜃−𝛾|𝒕) =
−�∑ tin

i=1 �
n+2c−1

   
Γ(n + 2c − 1) � �

∑ 𝑡𝑖𝑛
𝑖=1
𝑦 �

−𝑛−2𝑐−𝛾∞

0
 𝑒−𝑦

−∑ 𝑡𝑖𝑛
𝑖=1
𝑦2

 𝑑𝑦 
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=
�∑ 𝑡𝑖𝑛

𝑖=1 �
−𝛾

Γ(𝑛 + 2𝑐 − 1)� 𝑒−𝑦 𝑦𝑛+2𝑐+𝛾−2 𝑑𝑦
∞

0
=
�∑ 𝑡𝑖𝑛

𝑖=1 �
−𝛾

Γ(𝑛 + 2𝑐 + 𝛾 − 1)
Γ(𝑛 + 2𝑐 − 1)  

Hence,  

[𝐸(𝜃−𝛾|𝒕)]− 1𝛾 = �
�∑ 𝑡𝑖𝑛

𝑖=1 �
−𝛾

Γ(𝑛 + 2𝑐 + 𝛾 − 1)
Γ(𝑛 + 2𝑐 − 1) �

−1 𝛾

 

𝜃�2 = ∑ 𝑡𝑖𝑛
𝑖=1 � Γ(𝑛+2𝑐−1)

Γ(𝑛+2𝑐+𝛾−1)�
1
𝛾                                                                            … (10)   

                                                                           
iii) Inverted Gamma prior information, under quadratic loss function 
    Combining the prior distribution in (4) and the likelihood function (2), the posterior 
distribution for the parameter 𝜃 given the data (t1, t2,…, tn) is derived as follows: 
 

ℎ(𝜃│t) = ∏ 𝑓(𝑡𝑖|𝜃)𝑛
𝑖=1 𝜋2(𝜃)

∫ ∏ 𝑓(𝑡𝑖|𝜃)𝜋2(𝜃)𝑑𝜃𝑛
𝑖=1

∞
0

=     𝑒−
�∑ 𝑡𝑖 +𝛽𝑛
𝑖=1 �

𝜃            𝜃−𝑛−𝛼−1                  

   ∫∞
0 𝑒−

�∑ 𝑡𝑖 +𝛽𝑛
𝑖=1 �

𝜃     𝜃−𝑛−𝛼−1   𝑑𝜃

                                  

Let      𝑦 = ∑ 𝑡𝑖 +𝛽
𝑛
𝑖=1

𝜃
 , 

 Then 
 

ℎ(𝜃|𝒕) =
yn+α+1   e−y

−(∑ ti + β)∫ yn+α−1  e−y∞
0   dyn

i=1
 

=
−�∑ ti +βn

i=1 �
n+α

   e−
�∑ ti +βn
i=1 �

θ

θn+α+1  Γ(n+α)                                                                        …  (11) 
 

  Now, according to the quadratic loss function, the corresponding Bayes' 
estimator for the parameter θ is derived by substituting the posterior distribution (11) 
in the numerator of (6), as follows: 

 

�
1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=
−(∑ ti + βn

i=1 )n+α   
Γ(n + α) � 𝜃−𝑛−𝛼−2

∞

0
  𝑒

−�∑ 𝑡𝑖+𝛽𝑛
𝑖=1 �
𝜃  𝑑𝜃 

Let 
𝑦 = �∑ 𝑡𝑖+𝛽𝑛

𝑖=1 �
𝜃

  
Then  

�
1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=
−(∑ 𝑡𝑖 + 𝛽𝑛

𝑖=1 )𝑛+𝛼

Γ(𝑛 + 𝛼) � 𝑒−𝑦 �
∑ 𝑡𝑖 + 𝛽𝑛
𝑖=1

𝑦 �
−𝑛−𝛼−2∞

0

−(∑ 𝑡𝑖 + 𝛽𝑛
𝑖=1 )
𝑦2

𝑑𝑦 

=
(∑ 𝑡𝑖 + 𝛽𝑛

𝑖=1 )−1Γ(𝑛 + 𝛼 + 1)
Γ(𝑛 + 𝛼)  

 
In the same manner the denominator of (6) become as follows 
 

�
1
𝜃2

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=

(∑ 𝑡𝑖 + 𝛽𝑛
𝑖=1 )−2Γ(𝑛 + 𝛼 + 2)

Γ(𝑛 + 𝛼)  
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Hence,  
 
𝜃�3 =   ∑ 𝑡𝑖+𝛽𝑛

𝑖=1
𝑛+𝛼+1

                                                                                             … (12)  
   
iv) Inverted Gamma prior information, under the general entropy loss function 
     According to the general entropy loss function, the corresponding Bayes' estimator 
for the parameter θ is derived by substituting the posterior distribution (11) in (7), as 
follows: 

𝐸(𝜃−𝛾|𝒕) =
−�∑ ti +βn

i=1 �
n+α

   

Γ(n+α) ∫ 𝜃−𝑛−𝛼−𝛾−1∞
0   𝑒

−�∑ 𝑡𝑖 +𝛽𝑛
𝑖=1 �

𝜃  𝑑𝜃  
Let 
 

𝑦 =
∑ 𝑡𝑖𝑛
𝑖=1 +𝛽2
𝜃

  
Then  
 
𝐸(𝜃−𝛾|𝒕)  

=
−�∑ tin

i=1 + β�
n+α

   
Γ(n + α) � �

∑ 𝑡𝑖 + 𝛽𝑛
𝑖=1

𝑦 �
−𝑛−𝛼−𝛾−1∞

0
𝑒−𝑦

−�∑ 𝑡𝑖𝑛
𝑖=1 + 𝛽�
𝑦2

𝑑𝑦 

Hence,  
  

𝐸[(𝜃|𝒕)−𝛾]−
1
𝛾 = �

�∑ 𝑡𝑖𝑛
𝑖=1 + 𝛽�

−𝛾
Γ(𝑛 + 𝛼 + 𝛾)

Γ(𝑛 + 𝛼) �
−1𝛾

 

Hence,  
 

𝜃�4 = (∑ 𝑡𝑖 + 𝛽𝑛
𝑖=1 ) � Γ(𝑛+𝛼)

Γ(𝑛+𝛼+𝛾)�
1
𝛾                                                                  …  (13)    

 
     It is interesting to note that equation (13) is a special case of equation (10) if we 
set β = 0, α = 2c-1, and γ = 1.      
                                                              
v) Inverted Chi square prior information, under quadratic loss function 
      Combining the prior distribution in (5) and the likelihood function (2), the 
posterior distribution for the parameter 𝜃 given the data (t1, t2… tn) is derived as 
follows: 
 

ℎ(θ│t) = ∏ 𝑓(𝑡𝑖|𝜃)𝑛
𝑖=1 𝜋3(𝜃)

∫ ∏ 𝑓(𝑡𝑖|𝜃)𝜋3(𝜃)𝑑𝜃𝑛
𝑖=1

∞
0

=     𝑒−
�∑ 𝑡𝑖 +𝛽2
𝑛
𝑖=1 �

𝜃            𝜃
−2𝑛−𝛼−2

2                   

   ∫∞
0 𝑒−

�∑ 𝑡𝑖 +𝛽2
𝑛
𝑖=1 �

𝜃     𝜃
−2𝑛−𝛼−2

2    𝑑𝜃

                                  

Let     

𝑦 =
∑ 𝑡𝑖 +

𝛽
2

𝑛
𝑖=1

𝜃
 , 

 then 
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ℎ(𝜃|𝒕) =
y
2n+α+2

2    e−y

−(∑ ti + β
2)∫ y

2n+α−2
2   e−y∞

0   dyn
i=1

 

=
−�∑ ti +

β
2

n
i=1 �

2n+α
2    e−

�∑ ti +β
2

n
i=1 �

θ

θ
2n+α+2

2   Γ�2n+α
2 �

                                                                         … (14) 

 
     Now, according to the quadratic loss function, the corresponding Bayes' estimator 
for the parameter θ is derived by substituting the posterior distribution (14) in the 
numerator of (6), as follows: 

∫ 1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃∞
0 =

−�∑ ti+
β
2

n
i=1 �

2n+α
2    

Γ�2n+α
2 �

∫ 𝜃
−2𝑛−𝛼−4

2
∞
0   𝑒

−�∑ 𝑡𝑖+
𝛽
2

𝑛
𝑖=1 �

𝜃  𝑑𝜃  

Let 

𝑦 =
�∑ 𝑡𝑖+

𝛽
2

𝑛
𝑖=1 �

𝜃
  

Then  
 

�
1
𝜃

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0

=
−�∑ 𝑡𝑖 + 𝛽

2
𝑛
𝑖=1 �

2𝑛+𝛼
2

Γ �2𝑛 + 𝛼
2 �

� 𝑒−𝑦 �
∑ 𝑡𝑖 + 𝛽

2
𝑛
𝑖=1

𝑦
�

−2𝑛−𝛼−4
2∞

0

− �∑ 𝑡𝑖 + 𝛽
2

𝑛
𝑖=1 �

𝑦2
𝑑𝑦 

=
�∑ 𝑡𝑖 + 𝛽

2
𝑛
𝑖=1 �

−1
Γ �2𝑛 + 𝛼 + 2

2 �

Γ �2𝑛 + 𝛼
2 �

 

 
In the same manner the denominator of (6) become as follows 
 

�
1
𝜃2

 ℎ(𝜃|𝑡) 𝑑𝜃
∞

0
=
�∑ 𝑡𝑖 + 𝛽

2
𝑛
𝑖=1 �

−2
Γ �2𝑛 + 𝛼 + 4

2 �

Γ �2𝑛 + 𝛼
2 �

 

 
Hence,  
𝜃�5 =   2∑ 𝑡𝑖+𝛽𝑛

𝑖=1
2𝑛+𝛼+2

                                                                                             … (15)   
  
 
vi) Inverted Chi square prior information, under the general entropy loss 
function 
     According to the general entropy loss function, the corresponding Bayes estimator 
for the parameter θ is derived by substituting the posterior distribution (14) in (7), as 
follows: 
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𝐸(𝜃−𝛾|𝒕) =
−�∑ ti +

β
2

n
i=1 �

2n+α
2    

Γ�2n+α
2 �

∫ 𝜃
−2𝑛−𝛼−2𝛾−2

2
∞
0   𝑒

−�∑ 𝑡𝑖 +𝛽2
𝑛
𝑖=1 �

𝜃  𝑑𝜃  

Let 

𝑦 =
∑ 𝑡𝑖+

𝛽
2

𝑛
𝑖=1

𝜃
  

Then  
 
𝐸(𝜃−𝛾|𝒕)

=
−�∑ tin

i=1 + β
2�

2n+α
2

   

Γ �2n + α
2 �

� �
∑ 𝑡𝑖 + 𝛽

2
𝑛
𝑖=1

𝑦
�

−2𝑛−𝛼−2𝛾−2
2

∞

0
𝑒−𝑦

− �∑ 𝑡𝑖𝑛
𝑖=1 + 𝛽

2�

𝑦2
 𝑑𝑦 

 
And after few steps  

𝐸[(𝜃−𝛾|𝒕)]−
1
𝛾 = �

�∑ 𝑡𝑖𝑛
𝑖=1 + 𝛽

2�
−𝛾

Γ �2𝑛 + 𝛼 + 2𝛾
2 �

Γ �2𝑛 + 𝛼
2 �

�

−1𝛾

 

 
Hence,  

𝜃�6 = �∑ 𝑡𝑖 + 𝛽
2

𝑛
𝑖=1 ��

Γ�2𝑛+𝛼2 �

Γ�2𝑛+𝛼+2𝛾2 �
�

1
𝛾
                                                                   … (16)  

                                                                         
 
SIMULATION AND RESULTS  
    In order to investigate the performance of the estimators obtained in the above 
section, a simulation study is conducted. Samples of size n= 25, 50 and 100 are 
generated from the exponential distribution with two values of θ (θ = 0.5, 1). Four 
values for the extension of Jeffreys parameter (c = 0.5, 1, 1.5, 2), and the following 
pairs of values of the hyper parameters α and β are chosen {(α, β) = (1, 0.5), (2, 1), (5, 
1)}. Four values for the GELF parameter γ are chosen as (γ = 1, -1, 2, -2). The 
number of replication used was R=1000, and the mean of the estimated values for the 
parameter θ is obtained along with its mean square error (MSE) to compare the 
efficiency of the estimators , where 
 

𝜇�𝜃�� = ∑ 𝜃�𝑖1000
𝑖=1
𝑅

,        and 𝑀𝑆𝐸 �𝜃�� =  ∑ �𝜃�𝑖−𝜃�
21000

𝑖=1
𝑅

 
 

The results of the simulation study are summarized and tabulated in tables 1-3 for 
each estimator and for all sample sizes.  
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Table (1) the mean of Bayes estimators and MSE with the extension of Jeffreys 
prior under QLF �𝜽�𝟏� and GELF�𝜽�𝟐�. 

θ = 0.5, c = 0.5 

n Criteria �θ�1� 
�θ�2� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4835 .5350 .5237 .5028 .4931 
MSE .0101 .0133 .0121 .0106 .0103 

50 
Mean .4924 .5178 .5124 .5022 .4973 
MSE .0051 .0059 .0056 .0053 .0052 

100 
Mean .4950 .5076 .5050 .5000 .4975 
MSE .0026 .0028 .0028 .0027 .0027 

θ = 0.5, c = 1 

n Criteria �θ�1� 
�θ�2� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4656 .5123 .5028 .4835 .4744 
MSE .0103 .0112 .0106 .0101 .0101 

50 
Mean .4829 .5073 .5022 .4924 .4876 
MSE .0052 .0054 .0053 .0051 .0051 

100 
Mean .4901 .5025 .5000 .4950 .4925 
MSE .0027 .0027 .0027 .0026 .0027 

θ = 0.5, c = 2 

n Criteria �θ�1� 
�θ�2� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4337 .4744 .4656 .4489 .4411 
MSE .0123 .0101 .0103 .0111 .0117 

50 
Mean .4650 .4876 .4829 .4738 .4694 
MSE .0057 .0051 .0052 .0054 .0055 

100 
Mean .4807 .4926 .4902 .4854 .4831 
MSE .0028 .0027 .0027 .0027 .0028 

θ = 1, c = 0.5 

n Criteria �θ�1� 
�θ�2� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .9670 1.0701 1.0475 1.0056 .9861 
MSE .0404 .0531 .0484 .0426 .0411 

50 
Mean .9848 1.0356 1.0250 1.0045 .9946 
MSE .0205 .0237 .0226 .0211 .0207 

100 
Mean .9900 1.0152 1.0100 .9999 .9950 
MSE .0106 .0113 .0110 .0107 .0106 

θ = 1, c = 1.5 

n Criteria �θ�1� 
�θ�2� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .8979 .9861 .9670 .9311 .9144 
MSE .0444 .0411 .0404 .0412 .0425 

50 
Mean .9476 .9946 .9848 .9658 .9567 
MSE .0215 .0207 .0205 .0207 .0210 

100 
Mean .9708 .9950 .9900 .9803 .9756 
MSE .0109 .0106 .0106 .0107 .0108 
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Table (2) the mean of Bayes estimators and MSE with inverted gamma prior under QLF 
�𝜽�𝟑� and GELF�𝜽�𝟒�. 

θ = 0.5, α = 1, β = 0.5 

n Criteria �θ�3� 
�θ�4� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4841 .4933 .5027 .4838 .5228 
MSE .0094 .0095 .0098 .0097 .0111 

50 
Mean .4925 .4973 .5022 .4924 .5122 
MSE .0049 .0050 .0051 .0050 .0054 

100 
Mean .4951 .4975 .5000 .4950 .5050 
MSE 0.0026 .0026 .0026 .0026 .0027 

 
θ = 0.5, α = 2, β = 1 

n Criteria �θ�3� 
�θ�4� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4846 .4936 .5026 .4841 .5219 
MSE .0087 .0088 .0091 .0094 .0103 

50 
Mean .4927 .4974 .5021 .4925 .5120 
MSE .0047 .0048 .0049 .0049 .0052 

100 
Mean .4951 .4975 .5000 .4951 .5049 
MSE .0025 .0026 .0026 .0026 .0026 

θ = 0.5, α = 5, β = 1 

n Criteria �θ�3� 
�θ�4� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4378 .4450 .4523 .4586 .4679 
MSE .0108 .0101 .097 .0099 .0089 

50 
Mean .4662 .4705 .4747 .4787 .4835 
MSE .0053 .0051 .0050 .0051 .0048 

100 
Mean .4811 .4834 .4857 .4879 .4904 
MSE .0027 .0027 .0026 .0026 .0026 

θ = 1, α = 2, β = 1 

n Criteria �θ�3� 
�θ�4� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .9336 .9507 .9682 .9497 1.0054 
MSE .0383 .376 .0375 .0390 .0394 

50 
Mean .9665 .9757 .9851 .9754 1.0044 
MSE .0199 .0197 .0197 .0201 .0203 

100 
Mean .9805 .9853 .9901 .9852 .9999 
MSE .0105 .0106 .0105 .0104 .0104 

θ =1, α = 5, β = 1 

n Criteria �θ�3� 
�θ�4� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .8432 .8572 .8714 .8997 .9014 
MSE .0523 .0490 .0461 .0428 .0414 

50 
Mean .9147 .9230 .9313 .9481 .9486 
MSE .0241 .0230 .0221 .0211 .0207 

100 
Mean .9528 .9573 .9618 .9710 .9711 
MSE .0118 .0114 .0112 .0108 .0107 
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Table (3) The mean of Bayes estimators and MSE with inverted Chi square 
prior under QLF �𝜽�𝟓� and GELF�𝜽�𝟔�. 

 

θ = 0.5, α = 1, β = 0.5 

n Criteria �θ�5� 
�θ�6� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .5336 .5343 .5233 .5028 .4932 
MSE .0122 .0127 .0116 .0102 .0099 

50 
Mean .5174 .5176 .5123 .5022 .4973 
MSE .0057 .0058 .0055 .0052 .0051 

100 
Mean .5075 .5075 .5050 .5000 .4975 
MSE .0028 .0028 .0027 .0027 .0026 

θ = 0.5, α = 2, β = 1 

n Criteria �θ�5� 
�θ�6� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .5323 .5336 .5228 .5027 .4933 
MSE .0113 .0122 .0112 .0098 .0095 

50 
Mean .5171 .5174 .5122 .5022 .4973 
MSE .0055 .0057 .0054 .0051 .0050 

100 
Mean .5074 .5075 .5050 .5000 .4975 
MSE .0027 .0028 .0027 .0026 .0026 

θ = 0.5, α = 5, β = 1 

n Criteria �θ�5� 
�θ�6� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .4762 .5028 .4932 .4753 .4669 
MSE .0088 .0099 .0095 .0094 .0096 

50 
Mean .4881 .5022 .4973 .4878 .4832 
MSE .0047 .0051 .0050 .0049 .0050 

100 
Mean .4927 .5000 .4975 .4927 .4903 
MSE .0025 .0026 .0026 .0026 .0026 

θ = 1, α = 2, β = 1 

n Criteria �θ�5� 
�θ�6� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean 1.0253 1.0468 1.0256 .9862 .9678 
MSE .0416 .0465 .0432 .0395 .0389 

50 
Mean 1.0144 1.0248 1.0145 .9946 .9850 
MSE .0209 .0221 .0213 .0203 .0201 

100 
Mean 1.0049 1.0100 1.0049 .9950 .9901 
MSE .0106 .0109 .0107 .0105 .0105 

θ = 1, α = 5, β = 1 

n Criteria �θ�5� 
�θ�6� 

γ = -2 γ = -1 γ = 1 γ = 2 

25 
Mean .9174 .9864 .9676 .9324 .9159 
MSE .0396 .0396 .0389 .0398 .0410 

50 
Mean .9575 .9946 .9849 .9661 .9571 
MSE .0202 .0203 .0201 .0203 .0206 

100 
Mean .9758 .9950 .9901 .9804 .9757 
MSE .0106 .0105 .0105 .0106 .0107 
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DISCUSSION 
The results of this study are stated in the following points:  
The effect of prior information parameters 
    It is noted that Bayes estimators based on the extension of Jeffreys prior 
information are generally underestimated with the increase of c. The extent of 
underestimation is higher for small n. On the other hand the estimates of the 
parameter based on both the inverted gamma and the inverted chi square priors are 
observed to be underestimated with the increase of θ and the hyper parameter α. The 
extent of underestimation is higher in the case of small n.  In general Bayes estimator 
based on the inverted gamma prior is the best when the hyper parameters α and β are 
close.   
The effect of loss function 

   Comparison with respect to loss functions shows that Bayes estimators of the 
parameter θ under GELF are better than QLF for certain values of γ and depending on 
the values of the prior parameters. From table 1 we can easily observe that results are 
better with positive γ and small c. Positive γ is also better in tables 2 and 3 except the 
cases when α = 5 and β = 1, were  estimators with negative γ are better. Under both 
the QLF and GELF with negative γ we can observe that the parameters are 
overestimated with the inverted chi square prior with small α and β,  and the extent of 
overestimation is higher when n is small. 
The effect of sample size 

  It is apparent from Tables (1-3) that MSE of all the estimators decreases notably 
as the sample size increases. 

Finally; and after an extensive study of the results, we suggest the use of the 
GELF with proper choice of γ, as a suitable alternative of the QLF when the loss is 
asymmetric in nature. The comparison of the informative and non-informative priors 
shows that informative prior performs better than non-informative prior. Accordingly; 
if adequate information is available about the parameters it is preferable to use 
conjugate informative priors, otherwise the extension of Jeffreys’ prior gives quite 
reasonable results. 
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