On g^{*}s-Closed Functions in Topological Spaces

Dr. Salim dawood Mohisn

Education College, University of AL-Mustansiriya /Baghdad

Received on: 16/9/2013 & Accepted on: 6/4/2014

ABSTRACT

Pushpalatha and K. Anitha [1] introduce a new concept of functions which is g^{*}s-closed function in topological spaces. In this paper, we modify this concept and study the properties of some types of these functions.

Keywords:- ((g^*s -closed set, g^*s -closed function, strongly g^*s -closed function irresolute g^*s -closed function))

الخلاصة

INTRODUCTION

.B. Navalagi in [3] introduce new class of closed sets is said to be g*s-closed set in topological spaces. In 2011 Pushpalatha and K. Anitha [1], are studying the properties of these class of closed sets and investigated new types of continuous functions which are g*s-continuous functions upon g*s-closed sets with give some properties and relationships of these functions as well as g*s-closed functions

In this work, we modify the definition of g^* s-closed function appear in [1] by give anther types of these functions with study the relationship of these types and some properties.

Definition (1.1),[2]:-

Let (X,T) be a Topological space a subset A of X is said to be semi closed set if $A \subset cl(int(A))$. The complement of semi closed is said to be semi open.

Definition (1.2),[2]:-

Let (X,T) be a Topological space. The semi closure of A is denoted by Scl(A) and defined the intersection of all semi closed sets containing A.

Definitions (1.3):-

Let (X,T) be a Topological space, a subset A of X is said to be:

(1) generalized closed [4] (briefly, g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$, where

U is open set in

1051

https://doi.org/10.30684/etj.32.6B.3

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0</u> X. The complement of g-closed set is g-open set.

(2) generalized semi closed [5] (briefly, gs-closed) if $s cl(A) \subseteq U$ whenever $A \subseteq U$,

where U is open set in X. The complement of gs-closed set is gs-open set.

(3) semi generalized closed [3] (briefly, sg-closed) if $s cl(A) \subseteq U$ whenever $A \subseteq U$, where U is semi open set in X. The complement of sg-closed set is sg-open set.

(4) s*g-closed [5], if $cl(A) \subseteq U$ whenever $A \subseteq U$, where U is semi open set in X. The complement of s*g-closed set is s*g-open set.

(5) g*s-closed [1], if $scl(A) \subseteq U$ whenever $A \subseteq U$, where U is gs- open set in X. The complement of g*s-closed set is g*s-open set.

Remarks (1.4),[1], [5]:-

We summarize the fundamental relationships between several types of generalized closed set in the following diagram.

closed \longrightarrow s^{*}g-closed \longrightarrow g-closed \downarrow \downarrow \downarrow sg-closed \longleftarrow g^{*}s-closed \longrightarrow gs-closed

all examples of this diagram can be seen in [1], [5].

Some Types Of g^{*}s-Closed Functions:

In this section, we introduce some types of g^*s -closed functions which are strongly g^*s -closed functions and irresolute g^*s -closed functions with some properties of these types of functions and shows the relationships between these types of functions. These types are a modification of definition appears in [1].

Definition (2.1), [1]:-

 $f:(X,T)\longrightarrow(Y,\sigma)$ Let (X,T) and (Y,σ) are topological spaces. A function is said to be g^{*}s-closed function if for each closed set F in (X,T) then f(F) g^{*}s-closed in (Y,σ) .

Now, the following remark shows the relation between g^{*}s-closed function and closed function.

Remark (2.2), [1]:-

Every closed function is g^{*}s-closed function, but the converse is not necessary to be true. To illustrate that consider the following example.

Let $X = Y = \{a, b, c\}$ and defined the topologies $(X, T) = \{X, \phi, \{b, c\}\}$ and $(Y, \sigma) = \{X, \phi, \{a\}\}$. The function $f : (X, T) \longrightarrow (Y, \sigma)$ defined by f(x)=x is g^*s -closed function but not closed since $\{a\}$ is closed in (X, T) and $f(\{a\})=\{a\}$ is not closed in (Y, σ) .

Now, we give other type of g^* s-closed functions from modification of definition (2.1) which call strongly g^* s-closed function.

Definition (2.3):-

Let (X,T) and (Y,σ) are topological spaces. A function $f:(X,T) \longrightarrow (Y,\sigma)$ is said to be strongly g^{*}s-closed function if for each g^{*}s- closed set F in (X,T) then f(F) closed in (Y,σ) .

Next, the following proposition give the relation between strongly g^{*}s-closed function and closed function.

Proposition (2.4):-

Let $f: (X,T) \longrightarrow (Y,\sigma)$ be a function. If f is strongly g^{*}s-closed function then f is closed function.

Proof:-

Let f is strongly g^{*}s-closed function and F is closed set in (X,T) by using remark (1.4), we get F is g^{*}s-closed set, thus f(F) is closed set in (Y,σ) , then f is closed function.

But, the converse of proposition above is not necessary to be true. To illustrate that consider the following example.

Example (2.5):-

Let $X = Y = \{a, b\}$, $(X, T) = \{X, \phi\}$ and $(Y, \sigma) = \{X, \phi, \{b\}\}$, then the function $f: (X, T) \longrightarrow (Y, \sigma)$ is defined by f(x)=x is closed function but not strongly g^* s-closed function since $\{b\}$ is g^* s-closed in (X, T) but not closed in (Y, σ) .

From proposition (2.4), we can get the following corollary. The proof is easy thus we its omitted

Corollary (2.6):-

Let $f: (X,T) \longrightarrow (Y,\sigma)$ be a function. If f is strongly g^{*}s-closed function then f is g^{*}s- closed function.

also, the converse of above corollary is not necessary to be true. To show that see the following example.

Example (2.7):-

Let $X = Y = \{a, b\}$, (X, T) an indiscrete topology on Xand $(Y, \sigma) = \{X, \phi, \{a\}\}$, then the function $f : (X, T) \longrightarrow (Y, \sigma)$ the identity function is g^{*}s- closed function but not strongly g^{*}s-closed function since $\{a\}$ is g^{*}sclosed in (X, T) but not closed in (Y, σ) . More, properties of strongly g^*s -closed function have been given by the following theorem

Theorem (2.8):-

Let $f:(X,T) \longrightarrow (Y,\sigma)$ be a surjetive function. Then f is strongly g^{*}s-closed function if and only if for each subset S of Y and each g^{*}s-open U in (X,T) there is an open set V in (Y,σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:-

Necessity. Suppose that f is strongly g^{*}s-closed function and let S subset of Y and each g^{*}s-open U in X containing $f^{-1}(S)$. PUT V = Y - (f(X - U)), then $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Sufficiency. Let F be g^{*}s-closed set in X, then $f^{-1}(Y - f(F)) \subseteq X - F$ and X - F is g^{*}s- open then by hypothesis there is open set V in (Y, σ) such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore, we have $Y - V \subseteq f(F)$ and $F \subseteq f^{-1}(Y - V)$, hence we obtain f(F) = Y - V, thus f(F) is closed set in (Y, σ) then f is strongly g^{*}s-closed function.

As well as these types can be modifined g^*s -closed function into the following definition

Definition (2.9):-

Let (X,T) and (Y,σ) are topological spaces. A function $f:(X,T) \longrightarrow (Y,\sigma)$ is said to be irresolute g^{*}s-closed function if for each g^{*}s- closed set F in (X,T) then f(F) is g^{*}s- closed in (Y,σ) .

Next, the following proposition shows the relationship of irresolute g^*s -closed with other types of these functions

Proposition (2.10):-

Let $f:(X,T) \longrightarrow (Y,\sigma)$ be a function. If f is strongly g^{*}s-closed function then f is irresolute g^{*}s- closed function.

Proof:-

Let f is strongly g^{*}s-closed function and F is g^{*}s- closed set in (X,T) the using definition (2.3), we get f(F) is closed set, thus f(F) is g^{*}s-closed set in (Y,σ) , then f is irresolute g^{*}s- closed function.

But, the converse of above proposition above is not necessary to be true. To illustrate that consider the following example.

Example (2.11):-

Let $X = Y = \{a, b\}$, $(X, T) = \{X, \phi\}$ and $(Y, \sigma) = \{X, \phi, \{b\}, \{a\}\}$, then the function $f : (X, T) \longrightarrow (Y, \sigma)$ is defined by f(x)=x is closed function but not

irresolute g*s-closed function since {b} is g*s-closed in (X,T) but not g*s -closed in (Y,σ) .

also, give the relation between irresolute g^{*}s-closed function and g^{*}s-closed function by the following proposition.

Proposition (2.12):-

Let $f: (X,T) \longrightarrow (Y,\sigma)$ be a function. If f is irresolute g^{*}s-closed function then f is g^{*}s- closed function.

Proof:-

Let f is irresolute g*s-closed function and F is closed set in (X,T) the using remark (1.4), we get f(F) is g*s- closed set, thus f(F) is g*s-closed set in (Y,σ) , then f is g*s- closed function.

also, the converse of above proposition above is not necessary to be true. To illustrate that consider the following example.

Example (2.11):-

Let $X = Y = \{a, b\}$, $(X, T) = \{X, \phi, \{a\}\}$ and $(Y, \sigma) = \{Y, \phi, \{b\}\}$, then the function $f : (X, T) \longrightarrow (Y, \sigma)$ is defined by f(x)=x is closed function but not g^*s -closed function since $\{b\}$ is closed in (X, T) but not g^*s -closed set in (Y, σ) .

The following theorem give anther properties of irresolute g^*s -closed function.

Theorem (2.12):-

Let $f:(X,T) \longrightarrow (Y,\sigma)$ be a surjetive function. Then f is irresolute g*s-closed function if and only if for each subset S of Y and each g*s-open U in (X,T) there is an g*s- open set V in (Y,σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:-

Necessity. Suppose that f is irresolute g^*s -closed function and let subset S of Y and each g^*s -open U in X containing $f^{-1}(S)$. PUT V = Y - (f(X - U)), then $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Sufficiency. Let F be g*s-closed set in X, then $f^{-1}(Y - f(F)) \subseteq X - F$ and X - F is g*s- open then by hypothesis there is open set V in (Y, σ) such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore, we have $Y - V \subseteq f(F)$ and $F \subseteq f^{-1}(Y - V)$, hence we obtain f(F) = Y - V, thus f(F) is g*s- closed set in (Y, σ) then f is irresolute g*s-closed function.

The Composition of Some Types Of g^{*}s-Closed Functions:

In this section, we introduce the composition of some types of g^*s -closed function which studied in previous section.

Theorem (3.1):-

Let $(X,T),(Y,\sigma)$ and (Z,η) topological spaces and $f:(X,T)\longrightarrow(Y,\sigma)$ be g^* s-closed function.

(1) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is strongly g^*s -closed then *hof* is closed function.

(2) if $h:(Y,\sigma)\longrightarrow(Z,\eta)$ is irresolute g^*s - closed then hof is g^*s - closed function.

Proof:-

(1) Let F be a closed set in (X,T) and since f is g*s-closed function then f(F) is g*s-closed set in Y also, since h is strongly g*s – closed function thus, h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is closed function.

(2) Let F be a closed set in (X,T) and since f is g^*s -closed function then f(F) is g^*s -closed set in Y also, since h is irresolute g^*s -closed function thus, h(f(F)) is g^*s -closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is g^*s -closed function.

Theorem (3.2):-

Let $(X,T),(Y,\sigma)$ and (Z,η) topological spaces and $f:(X,T)\longrightarrow(Y,\sigma)$ be closed function.

(1) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is g^*s - closed function then *hof* is g^*s - closed function. (2) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is strongly g^*s - closed function then *hof* is closed function.

(3) if $h:(Y,\sigma)\longrightarrow(Z,\eta)$ is irresolute g^{*}s- closed function hof is g^{*}s- closed function.

Proof:-

(1) Let F be a closed set in (X,T) and since f is closed function then f(F) is closed set in Y also, since h is g^*s - closed function thus, h(f(F)) is g^*s - closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is g^*s - closed function.

(2) Let F be a closed set in (X,T) and since f is closed function then f(F) is closed set in Y and by remark (1.4) we get f(F) is g*s-closed set also, since h is strongly g*s – closed function thus, h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is closed function.

(3) Let F be a closed set in (X,T) and since f is closed function then f(F) is closed set in Y and by remark (1.4) we get f(F) is g^*s -closed set also, since h is irresolute g^*s - closed function thus, h(f(F)) is g^*s - closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is g^*s - closed function.

Theorem (3.3):-

Let $(X,T),(Y,\sigma)$ and (Z,η) topological spaces and $f:(X,T)\longrightarrow(Y,\sigma)$ be strongly g^{*}s- closed function.

(1) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is g^{*}s- closed function then *hof* is irresolute g^{*}s- closed function.

(2) if $h:(Y,\sigma)\longrightarrow(Z,\eta)$ is closed function then *hof* is strongly g^*s -closed function.

(3) if $h:(Y,\sigma)\longrightarrow(Z,\eta)$ is strongly g^{*}s- closed function then *hof* is strongly g^{*}s- closed function.

(4) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is irresolute g^{*}s- closed function then *hof* is irresolute g^{*}s- closed function.

Proof:-

(1) Let F be a g^*s - closed set in (X,T) and since f is strongly g^*s - closed function then f(F) is closed set in Y also, since h is g^*s - closed function thus, h(f(F)) is g^*s - closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is irresolute g^*s - closed function.

(2) Let F be a g^*s - closed set in (X,T) and since f is strongly g^*s - closed function then f(F) is closed set in Y also, since h is closed function thus, h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is strongly g^*s - closed function.

(3) Let F be a g^*s - closed set in (X,T) and since f is strongly g^*s - closed function then f(F) is closed set in Y and by remark (1.4) we get f(F) is g^*s -closed set also, since h is strongly g^*s - closed function thus, h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is strongly g^*s - closed function.

(4) Let F be a g^*s – closed set in (X,T) and since f is strongly g^*s – closed function then f(F) is closed set in Y and by remark (1.4) we get f(F) is g^*s -closed set also, since h is irresolute g^*s - closed function thus, h(f(F)) is g^*s - closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is irresolute g^*s - closed function.

Theorem (3.4):-

Let $(X,T),(Y,\sigma)$ and (Z,η) topological spaces and $f:(X,T)\longrightarrow(Y,\sigma)$ be irresolute g^{*}s-closed function.

(1) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is strongly g^*s - closed function then *hof* is strongly g^*s - closed function.

(2) if $h: (Y, \sigma) \longrightarrow (Z, \eta)$ is irresolute g^{*}s- closed function then *hof* is irresolute g^{*}s- closed function.

Proof:-

(1) Let F be a g^*s -closed set in (X,T) and since f is irresolute g^*s -closed function then f(F) is g^*s -closed set in Y also, since h is strongly g^*s - closed function thus,

h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is strongly g^*s - closed function.

(2) Let F be a g^{*}s-closed set in (X,T) and since f is irresolute g^{*}s-closed function then f(F) is g^{*}s-closed set in Y also, since h is irresolute g^{*}s – closed function thus, h(f(F)) is closed set in Z, but h(f(F)) = (hof)(F) Therefore; hof is irresolute g^{*}s – closed function.

References:

[1] A. Pushpalatha and K. Antitha, "g*s-Closed Set in Topological Spaces", Int. J. Contemp. Math. Sciences, Vol. 6, No. 19, PP. 917-929, (2011).

[2] Dontchev J. and Ganster M. "On sg-Closed Sets and $g\alpha$ -Closed sets", Men. Fac. Sci. Kochi Unvi. Ser. No. 20, PP. 1-5, (1999).

[3] G. B. Navalgi "Definition Bank", In General Topology, (2000)..

[4] Levine N. "Generalized Closed Sets in Topology", Rend. Civc. Math. Palermo 19 PP. 89-96, (1970).

[5] M. KHAN, T. NOIRI and M. HUSSAIN, "On s^{*}g-Closed Sets and s^{*}-Normal Spaces", Coden Jnsmac, Vol. 48, No. 1, PP. 31-41, (2008).