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ABSTRACT 
      In this paper a direct method using parameterization technique is applied for 
solving some problems in calculus of variations. The parameterization technique 
based on Laguerre and Hermite polynomials is introduced to reduce a variational 
problem to quadratic programming problem. Examples are given to demonstrate 
the validity of method. 
Keywords: calculus of variation, orthogonal polynomials, parameterization   
Technique. 
 

تحدیدالمعاییروالثوابت تقنیة التغایر باستخدام حل مسائل في حسبان  
 :الخلاصة

لحل بعض المسائل  ر والثوابتیتقنیة تحدید المعای یقة مباشرة باستخدامفي ھذا البحث تم تطبیق طر          
 لاختزالتم تقدیمھ  متعدد الحدود والمعتمدعلى متعددات  ر والثوابتیتقنیة تحدید المعایفي حسبان التغایر. 

 الطریقة.  صحةمسالة التغایر الى مسالة البرمجة التربیعیة. اعطیت بعض الامثلة لتوضیح 
  

INTRODUCTION 
he calculus of variations is a branch of mathematical analysis that studies extrema 
and critical points of functionals (or energies). Functional minimization problems 
known as variational problems appear in engineering and science where 

minimization of functionals, such as Lagrangian, strain, potential, total energy, give the 
lows governing the systems behavior [1]. 
     Some popular methods for solving variational problems are direct methods. A fast 
numerical method for solving calculus of variation problems was given by [1], the direct 
method of Ritz, Walsh functions [2], Laguerre series [3], shifted Legender polynomial 
series [4], shifted  Chebychev series [5], Fourier series [6] and nonclassical 
parameterization [7] have been applied to solve variational problems. 
    In this work, we propose a direct method using parameterization technique with 
Laguerre and Hermite polynomials for finding the extremal of some variational problems. 
The application of the method will convert the variational problem to quadratic 
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programming problem, then using Lagrange multiplier technique to find the unknown 
parameters. 
 
Orthogonal Polynomials  
      Special orthogonal polynomials began appearing in mathematics before the 
significance of such a concept became clear. For instance, Laplace used Hermite 
polynomials in his studies in probability while Legendre and Laplace utilized Legender 
polynomials in celestial mechanics. Some properties of Hermite and Laguerre are given 
because these are the most extensively studied and here the longest history [8]. 
  
Hermite Polynomials and Their Properties 
     Hermite polynomials and its applications have been studied for long and still attract 
attention. One can refer a long and list of books and journals for advanced knowledge of 
Hermite polynomials and its extension, for example [9], for books, and [10],[11]and[12] 
for journals. 
Definition [13] 
     The nth Hermite polynomials denoted by )t(Hn are given by 

)t(Hn = 210=
−

21− ,,n
dt

ede n

tn
tn)(  
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The Hermite polynomials have many important properties are  
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• Differentiation property 
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• Operational matrix of  derivative D H : 
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020000

000040
000002
000000

n




 

        
Laguerre Polynomials and Their Properties   
          The Laguerre polynomials were introduced by Edmond Laguerre more than 150 
years ago. Many applications of them on various problems in mathematics, physics and 
electrotechnics were found. The Laguerre polynomials are orthogonal polynomials with 
respect to the weighting function te−  on the half-line  [ )∞0,  they are denoted by the 
letter "L" with the order as subscript and normalized by the condition that the coefficient 
of the higest order term of nL is !n/)( n1− , [14]. 
 
Definition [15] 
The nth Laguerre polynomials are given by the formula 

)t(Ln = )et(
dt
de tn

n

n
t −   

also )t(Ln  can be expressed as 
 

)t(Ln

k
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The Laguerre polynomials have many important properties, are 
 
• The initial values 
      )(Ln 0 =n!  
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Lagrange Methods and Quadratic Programming 
Lagrange methods [16] 
     The Lagrange methods for dealing with constrained optimization problem are based 
on solving the Lagrange first-order necessary conditions. 
In particular, for solving the problem with equality constraints only: 
           
                    Minimize f(x) 
                                    0=jg       m,...,,j 21= <n 
the Lagrangian function is follows: 

      )x(g)x(f),x(L j
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where λ is an ( 1×m )vector of Lagrange multipliers. 
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In general, we can set the partial derivative to zero to find the minimum: 
                 

            0=λ
∂
∂ ),x(
x
L

i
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            0=λ
λ∂
∂ ),x(L

j

                       j=1,…,m 

where x *  is the minimum solution and *λ is the set of the associated Lagrange 
multipliers. 
 
Quadratic programming [16]   
     An important special case is when the target function f is quadratic and the constraints 
are linear:  

    Minimize cxQxx)( TT +
2
1

   

        subject Ax=b        
Q is asymmetric matrix, x T is transpose of x and the Lagrange necessary conditions 
become: 

)bAx(cxQxx),x(L TTT −λ++
2
1

=λ  

AcQx
x
L Tλ++=
∂
∂

 

bAxL
−=

λ∂
∂

 

Since )AA( TT λ=λ  therefore 
         0=λ++ TAcQx   
          0=− bAx  
If Q is nonsingular then the solution becomes: 
x= ]bcAQ[)AAQ(AQCQ TT ++− 1−1−1−1−1−  
λ= - (AQ ]bcAQ[)AT +1−1−1−  
 
Direct Method Using Hermite Polynomials 
     The simplest form of a variational problem can be considered as finding the extremum 
of the value of the functional [7]: 

∫
1

0

=
t

t
dt]t),t(x),t(x[F)]t(x[J                                                                                …(1) 

To find the extreme value of J, the boundary points of the admissible curves are known in 
the following form 

,)t(x α=0   β=1)t(x                                                                               …(2) 
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Suppose the variable )t(x i  can be expressed approximately as    

)t(Ha)t(Ha)t(x T
i

N

j
jiji ==∑

0=

      i=1,2,…,n,         j=0,1,…,N                          …(3) 

where n,...,,i,]a,...,a,a[a T
iNiii 21== 10  are 1×1+ )N(  vector of unknown parameters 

with property that )t(xa jiij =  and T
N ]H,...,H,H[)t(H 10=  is 1×1+ )N(  vector of 

Herimte polynomial )t(H . 
 
Differentiate eq.(3), yields: 

)t(HDa),t(Ha)t(x H
T

i
T

ii ==                             i=1,2,…,n                                …(4) 
Where D H  is the operational matrix of derivative for Hermite polynomials 
Substituting eqs.(3)and(4) into eq.(1),  the functional  J becomes a nonlinear 
mathematical programming problem of unknown parameters ija  , where i=1,2,…,n, and 
j=0,1,…,N . Hence to find the extremum of J, we solve  

J(x) = Ta
2
1

Ha+c T a                                                                                      … (5) 

where   H = dt])t(HD),t(H[
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eq.(3) and the boundary conditions in eq.(2) imply 
,)t(Ha)t(x T α== 00 β== 11 )t(Ha)t(x T                                                         …(6) 

The quadratic programming problem in eqs.( 5)and(6) can be rewritten as follows : 

minimize     J(x) = Ta
2
1

Ha+c T a 

Subject to  
                  0=− bFa , 
where  

                







=

1

0

)t(H
)t(H

F T

T

,       







β
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The optimal values of unknown parameters, a *  , can be obtained easily using Lagrange 
multiplier technique as 
a * = -H +1− c H F(FT1− H F()FT 1−1− H )bc +1−    
Then substituting a * in eq.(3) to get the solution, we establish the detailed procedure via 
some problems 
The same procedure can be used with Laguerre polynomials and its operational matrix of 
derivative.  
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Numerical Examples 
First order functional extremal with two fixed boundary conditions 
          Consider the problem of finding the minimum of the time-varying functional 

J(x) = ∫
1

0

2 2+ xtx[  dt]x2+                                                                              …(7)  

with boundary conditions  x(0)=2, x(1)= 1+1e ,   the exact solution is 1+te  
for solving this problem by the Hermite polynomials, let 
x(t) = =Ha T  4433221100 ++++ HaHaHaHaHa                                             …(8)  
Differentiate eq.(8) to get 

)t(HDa)t(x H
T=                                                                                                      …(9)  
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Also, in view of boundary conditions, we have   
x(0 )= 2=12+2− 420 aaa                                                                            … (10) 

x(1)= 1+=20−4−2+2+ 1
43210 eaaaaa                                                       …(11) 

Now, by using eqs.(8) and (9), the cost function J may be rewritten as  

J(x)= ∫
1

0

+2+ dt]a)t()HD)(t(HDa)t(HtDaa)t(H)t(Ha[ T
HH

T
H

TTT                    …(12)       

Eqs(10-12) can be simplified to quadratic programming problem 

                  minimize     J(x) = Ta
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The optimal values of unknown parameters a i , 43210= ,,,,i  can be obtained easily using 
Lagrange multiplier technique as 
 

       

004353490=
017551420=
179532160=
604844440=
30682232=

4

3

2

1

0

.a

.a

.a
.a
.a

 

The approximate solution is : x(t)= 
43210 004353490+017551420+1795321680+60484440+30682232 H.H.H.H.H.

Table (1) shows the approximate solution obtained by using Hermite polynomials with 
M=4 and the exact solution. 
 

Table (1) comparison between exact and approximate solution. 

 

t exact Hermite M=4 Absolute 
error 

0 2 2       0 
0.1 2.1051709 2.1015461 0.0000248 
0.2 2.2214027 2.2214155 0.0000128 
0.3 2.3498588 2.3499013 0.0000425 
0.4 2.4918246 2.4918639 0.0000393 
0.5 2.6487212 2.6487310 0.0000098 
0.6 2.8221188 2.8220972 0.00000216 
0.7 3.0137527 3.0137245 0.00000282 
0.8 3.2255409 3.2255421 0.0000012 
0.9 3.4596031 3.4596409 0.0000378 
1 3.7183000 3.7183000 0.0000000 
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This problem also solved by using Laguerre polynomial to fined approximate solution 
with M=4, the same result are obtained. 
 
First order functional extremal with a fixed and a moving boundary  conditions    
     We consider the same functional extermal of eq.(7) but with unspecified )(x 1 , namely 

2=0)(x , dunspecifie)(x =1  
Another condition may be found from )]t(x),t(x,t[F   

0=1=tx |F , that is  1=0=2+2 tattx  or 1−=1)(x  

In this case, the exact solution is 1++= −
21

tt ecec)t(x , where 
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The equation (7) become J(x) = ∫
1

0

22 +2+ dtxxtx   with boundary condition 2=0)(x , 

1−=1)(x  , for solving this problem by Laguerre polynomials, let  
x(t) = =LaT  4433221100 ++++ LaLaLaLaLa                                                      …(13)    
 Differentiate eq.(13) to get 
 )t(LDa)t(x L

T=     
                                                                                                                               …(14) 

where       
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Also, in view of boundary conditions, we have   
x(0 )= 2=24+6+2− 4320 aaaa                                                                           …(15)                                                                        
x (1)= 1−=4+3−2−− 4321 aaaa                                                                         …(16)   
Now, by using eqs.(13) and (14), the cost function J may be rewritten as  

J(x)= ∫
1

0

+2+ dt]a)t()LD)(t(LDa)t(LtDaa)t(L)t(La[ T
LL

T
L

TTT                            …(17)                                         

 Eqs(15-17) can be simplified to quadratic programming problem 

                  minimize     J(x) = Ta
2
1

Ha+c T a 

 subject to  
                  0=− bFa , 
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The optimal values of unknown parameters a i , 43210= ,,,,i  can be obtained easily using 
Lagrange multiplier technique as 
 

015218890=
03139540−=
32106460−=

797191371=
668057260=

4

3

2

1

0

.a
.a
.a

.a
.a

 

 
The approximate solution is : 
x(t)= 

43210 015218890+03139540−32106460−797191371+668057260= L.L.L.L.L.  
Table (2) shows the approximate solution obtained by using Laguerre polynomials with 
M=4 and the exact solution. 
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Table (2) comparison between exact and approximate solution. 

 
This problem also solved by using Hermite polynomial to fined approximate solution 
with M=4, the same result are obtained. 
 
Conclusion  
      Direct parameterization technique was employed for finding the solution of first order 
functional extremal with fixed and moving boundary conditions using Laguerre and 
Hermite polynomials as abases functions. 
The presented methods with Laguerre and Hermite basis functions were applied to solve 
variational problems and the same results were obtained.   
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