Modified the RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

Dr. Abdul Monem Saleh Rahma
Computer Science Department / University of Technology/Baghdad
Email: monem.rahma@yahoo.com

Zainab Mohammed Hussein
Computer Science Department / University of Technology/Baghdad
Email: zainab_mohammed85@yahoo.com

Revised on: 12/10/2014 & Accepted on: 7/5/2015

ABSTRACT

The increase in the speed of computers and adoption on it as means of encryption (send and receive encrypted data), which led to the development of modern encryption techniques such as (stream cipher and block cipher). This increase in speed of the computers has increased the strength of the attacking techniques for stream cipher which is built according to two ways: (random key generation and XOR operation).

This paper proposes an approach in modifying RC4 stream cipher algorithm based on irreducible polynomial which is used in modern encryption methods such as AES.

The proposed algorithm achieves best results, it provides high level of complexity, to decrypt an encrypted message is composed of 8-bit the attacker needs 30*2^8 probability of keys at minimum, this mean the proposed algorithm will increase the complexity of the algorithm 30 times.

Keywords: Stream cipher, Rc4 algorithm, irreducible polynomial.

Keywords: تتعديل خوارزمية التشفير (RC4) بالاعتماد على متعددات الحدود الغير قابلة للاختزال.
INTRODUCTION

In a stream cipher approach, encryption a digital data stream one bit or one byte at a time. It breaks the message \(M \) into successive characters or bits, \(M_1, M_2, \ldots \), and encipher each \(M_i \) with its element \(K_i \) of a key stream \(K = K_1, K_2, K_3 \ldots \). That is \(E_K(M) = E_{K_1}(M_1) \cdot E_{K_2}(M_2) \). Basic idea of stream cipher comes from One-Time-Pad cipher using XOR operator on the plain text and the key to generate the ciphertext [1]. A stream cipher treats the message as a stream of bits and performs mathematical functions on each bit individually. When using a stream cipher, a plaintext bit will be transformed into a different ciphertext bit each time it is encrypted. Stream ciphers use keystream generators, which produce a stream of bits that is XORed with the plaintext bits to produce ciphertext [2]. Stream ciphers are faster and smaller to implement than block ciphers, however, they have an important security gap. If the same key stream is used, certain types of attacks may cause the information to be exposed [1].

RC4 is the one of popular stream cipher algorithm, such as (Vigenere cipher and Vernem cipher). RC4 algorithm depends on classical operation (XOR). This paper modifies the RC4 algorithm based on the multiplication of irreducible polynomial mathematics.

RC4 Stream Cipher algorithm, historical review.

Ron Rivest [1], one of the inventors of RSA introduced the RC4 algorithm in 1987. RC4 is acronym for "Rivest Cipher 4", it is also known “Ron’s Code 4". The algorithm in RC4 is optimized for software implementation. RC4 produces a keystream byte at each step. [3]

Algorithm 1 (RC4 Stream Cipher Encryption and Decryption)

Input [plaintext] and [key]
Output [cipher text]

Step 1: /Initialization /
for \(i = 0 \) to 255
\(S[i] = i; \)
\(T[i] = K[i \mod \text{key}]; \)
Next \(i; \)
Step 2: / Initial Permutation of \(S \) /
Set \(j = 0; \)
For \(i = 0 \) to 255
\(j = (j + S[i] + T[i]) \mod 256; \)
Swap \((S[i], S[j]); \)
Step 3: /Stream Generation/
Set \([i, j] = 0; \)
while (true)
\(i = (i + 1) \mod 256; \)
\(j = (j + S[i]) \mod 256; \)
Swap \((S[i], S[j]); \)
\(t = (S[i] + S[j]) \mod 256; \)
\(k = S[t]; \)
Step 4:/The process/
\(\text{Step 4.1: encryption } C = P \oplus k \)
\(\text{Step 4.1: decryption } P = C \oplus k \)
Step 5:/ End.

Irreducible Polynomial Mathematics

An (irreducible polynomial) is a polynomial $f(x)$ over a field F if and only if $f(x)$ cannot be expressed as a product of two polynomials both over F, and both of degree lower than that of $f(x)$. A field is a commutative ring in which all nonzero elements have a multiplicative inverse. For a given prime, p, the finite field of order p, $GF(p)$ is defined as the set \mathbb{Z}_p of integers $\{0, 1, \ldots, p-1\}$, together with the arithmetic operations modulo p. The finite field of order p^n is generally written $GF(p^n)$. GF is acronym for Galois field. There are a limited number of elements in the finite field; all operations performed in the finite field result in an element within that field. A polynomial $f(x)$ in $GF(2^n)$ is represented as:

$$f(x) = (a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0)$$

Can be exclusively represented by its n binary coefficients $(a_{n-1}, a_{n-2}, \ldots, a_0)$. Therefore, every polynomial in $GF(2^n)$ can be represented by an n-bit number. This paper is concerned with the finite field $GF(2^8)$. Each element of $GF(2^8)$ is a polynomial of degree 7 with coefficients in $GF(2)$. Thus, the coefficients of each term of the polynomial can take the value (0) or (1). Given that there are 8 terms in an element of $GF(2^8)$, an element can be represented by bit string of length 8, where each bit represents a coefficient. The least significant bit is used to represent the constant of the polynomial, and going from Right to left, represents the coefficient of x^i by the bit b_i where b_i is i bits to the left of the least significant bit. For example, the bit string (10101011) represents $(x^7+x^5+x^3+x+1)$. For convenience, a term x^i is found in the expression if the corresponding coefficient is 1. The term is omitted from the expression if the coefficient is 0.
Addition of two elements in GF \((2^8)\) is simply accomplished using eight XOR gates to add corresponding bits.

Multiplication in GF \((2^8)\) can be accomplished by first multiplying each term of the first polynomial with all of the terms of the second polynomial. Each of these products should be added together. If the degree of the new polynomial is greater than 7, then it must be reduced modulo using one of the irreducible polynomials which are represented in Table (1).

The extended Euclidean algorithm can be adapted to find the multiplicative inverse of a polynomial and \((\text{gcd})\) of two polynomials. Suppose two polynomials \(a(x), b(x),\) and \(m(x)\) is an irreducible polynomial, \(a(x)\) and \(b(x)\) are mutual inverses if \([a(x) \ast b(x) \mod m(x)] = [1]\).

Multiplication Table
To construct the multiplication finite field GF \((2^8)\) requires choosing irreducible polynomial of degree 8 illustrated in table (1). Each element of the finite field set other than 0 has a multiplicative inverse [1].

\(x^8 + x^4 + x^3 + x + 1\)	\(x^8 + x^3 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + 1\)	\(x^3 + x^2 + x + 1\)
\(x^8 + x^4 + x^3 + x + 1\)	\(x^8 + x^3 + x^2 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + x^4 + 1\)	\(x^8 + x^3 + x^2 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + x^4 + x + 1\)	\(x^8 + x^3 + x^2 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + x^4 + x^2 + 1\)	\(x^8 + x^3 + x^2 + x^4 + 1\)
\(x^8 + x^4 + x^3 + x^2 + x + 1\)	\(x^8 + x^3 + x^2 + x^4 + x^2 + 1\)
\(x^8 + x^4 + x^3 + x^2 + x + 1\)	\(x^8 + x^3 + x^2 + x^4 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + x + 1\)	\(x^8 + x^3 + x^2 + x^4 + x^2 + x + 1\)
\(x^8 + x^4 + x^3 + x^2 + 1\)	\(x^8 + x^3 + x^2 + x^4 + x + 1\)
Modified the RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

\[x^8 + x^4 + x^3 + x + 1 \]

\[x^8 + x^4 + x^3 + x^2 + x + 1 \]

\[x^8 + x^6 + x^4 + x^2 + x + 1 \]

The Finite field multiplication is achieved by multiplying the two polynomials for the two elements, if multiplication result in a polynomial of degree greater than n - 1, then the polynomial is reduced modulo some irreducible polynomial \(m(x) \) of degree n. That is, divided by \(m(x) \) and keep the remainder. The definition of irreducible polynomial is a polynomial \(f(x) \) over a field \(F \) is called irreducible if and only if \(f(x) \) cannot be expressed as a product of two polynomials, both over \(F \), and both of degree lower than that of \(f(x) \) [1].

The table below shows the multiplication in \(GF(2^8) \) with the irreducible Polynomial \(m(x)(x^8 + x^4 + x^3 + x + 1) \).

<table>
<thead>
<tr>
<th>Table (2) (multiplication in GF (2^8) with the irreducible Polynomial (m(x)(x^8 + x^4 + x^3 + x+1)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binar y</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>(x^2)</td>
</tr>
</tbody>
</table>

The table shows the results of the multiplication for different polynomials with the irreducible polynomial \(m(x) \). Each row represents a different polynomial, and the columns show the results of multiplying each polynomial by the irreducible polynomial. The results are presented in binary form, with each row corresponding to a different polynomial. The table includes the first 255 rows, covering all possible inputs, but for brevity, the complete table is not shown here.
In this work, the Encryption operation is replaced XOR of RC4 algorithm with the Modified RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

Table (3) multiplication inverse in GF \((2^8)\) with irreducible polynomial

<table>
<thead>
<tr>
<th>m (x) = (x^8 + x^4 + x^3 + x + 1)</th>
<th>k (= x)</th>
<th>k(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(x)</td>
<td>(x^3 + x^4 + x^2 + 1)</td>
<td>(x^3 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
</tr>
<tr>
<td>(x^2)</td>
<td>(x^6 + x^7 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
<td>(x^6 + x^7 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
</tr>
<tr>
<td>(....)</td>
<td>(....)</td>
<td>(....)</td>
</tr>
<tr>
<td>(x^4 + x^6 + x^5 + x^3 + x^2 + x)</td>
<td>(x^7 + x^8 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
<td>(x^7 + x^8 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
</tr>
<tr>
<td>(x^5 + x^6 + x^5 + x^3 + x^2 + x^2 + 1)</td>
<td>(x^8 + x^9 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
<td>(x^8 + x^9 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)</td>
</tr>
</tbody>
</table>

Modified Rc4 stream cipher algorithm based on Irreducible Polynomial

In this work, the Encryption operation is replaced XOR of RC4 algorithm with the equation

\[C = P \times k \mod \text{irreducible polynomial} \]

Where

- \(C\) = Cipher text
- \(P\) = Plaintext
- \(k\) = key
The decryption operation is
\[P = C \times k^{-1} \mod \text{irreducible polynomial} \quad \ldots (3) \]

\(k^{-1} \) = key inverse.

The mathematical operation addition & multiplication of irreducible polynomial is based on mathematical theory of GF \((2^8)\).

Figure (1) Block diagram of encryption system

Where
Processing = Encryption & Decryptio
Modified the RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

1. Convert the value of plaintext and key to binary then to polynomial equation.
2. Determine \((k & k^i)\) from table 3.
3. To encrypt use equation 2.
4. To decrypt use equation 3.

Step 5:/End/

The following example illustrates our technique in encryption & decryption part:
Input: Plaintext [\{ali\}] and Key [\{vpn\}]
The irreducible polynomial is \([x^8 + x^4 + x^3 + x + 1]\) randomly.
1. Find the ascii of \([a,l,i]=[97,108,105]\) respectively.
2. Find the ascii of \([v,p,n]=[118,112,110]\) respectively.
3. After perform initialization Permutation and Key Scheduling Algorithm on algorithm 1, the keys that was obtained after these two processes are \([59,32,35]\).
4. Convert plaintext to binary then to polynomial
4.1) \(a=97=[01100001]=\left[x^6 + x^5 + 1 \right]\).
4.2) \(l=108=[01101100]=\left[x^6 + x^5 + x^3 + x^2 \right]\).
4.3) \(i=105=[01101001]=\left[x^6 + x^5 + x^3 + 1 \right]\).
5. Convert Key to binary then to polynomial.
5.1) \(59=[00111011]=\left[x^5 + x^4 + x^3 + x + 1 \right]\).
5.2) \(32=[00010000]=\left[x^5 \right]\).
5.3) \(35=[00100011]=\left[x^5 + x + 1 \right]\).
6. To encrypt \((C=P*k) \mod \text{irreducible polynomial}\).
\(C_1=(x^6 + x^4 + x^3 + x + 1) \mod (x^8 + x^4 + x^3 + x + 1)\) The result is \(= (x^{11} + x^9 + x^7 + x^6 + x^4 + x^3 + x + 1) = (x^{11} + x^9 + x^7 + x^6 + x^4 + x^3 + x + 1)\) which has a degree\((11>7)\) so, The largest element appeared after multiplication process is \((x^7)\) because the results of the encryption operation are calculated using GF \((2^8)\) operations where, each element of GF \((2^8)\) is a polynomial of degree 7 with coefficients in GF \((2)\). Thus, if the result of multiplication with degree larger than 7, then the resulted polynomial should be reduced through dividing it by one of the irreducible polynomial in table \((1)\) to get the remainder which will be used as a resulted polynomial.

\[
\begin{array}{c}
 x^3 + 1 \\
 x^8 + x^4 + x^3 + x + 1 \\
\hline
 x^{11} + x^8 + x^7 + x^4 + x^3 + x + 1 \\
 x^{11} + x^7 + x^6 + x^4 + x^3 \\
 x^8 + x^3 + x + 1 \\
 x^8 + x^6 + x + 1 \\
\hline
 C_1 = x^6 + x^4 + x^3
\end{array}
\]
Modified the RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

C2 = P2 * k2 = (x^5 + x^5 + x^3 + x^2) mod (x^8 + x^4 + x^3 + x + 1) = (x^5 + x^5 + x^3 + x^2)
C3 = P3 * k3 = (x^5 + x + 1) * (x^6 + x^5 + x^3 + x) mod (x^8 + x^4 + x^3 + x + 1) = (x^5 + x^4 + x^2)

7. To decrypt (P = C * k^-1) mod irreducible polynomial.

P1 = C1 * k1^-1 = (x^6 + x^4 + x^3) * (x^6 + x^4 + x^3 + x^2 + x + 1) mod (x^8 + x^4 + x^3 + x + 1) = (x^6 + x^5 + 1) which is equivalent to (01100001) = 97 = a

P2 = C2 * k2^-1 = (x^5 + x^3 + x^2 + x + 1) * (x^5 + x^4 + x^3 + x) mod (x^8 + x^4 + x^3 + x + 1) = (x^6 + x^5 + x^3 + x) which is equivalent to (01101100) = 108 = l

P3 = C3 * k3^-1 = (x^5 + x^4 + x^3) * (x^7 + x^6 + x^5 + x^4 + 1) mod (x^8 + x^4 + x^3 + x + 1) = (x^6 + x^5 + x^3 + 1) which is equivalent to (0110101) = 105 = i

Discussion:

Security

The number of possibility of keys to decrypt RC4 algorithm is: 2^8 possibilities.

The following example illustrates number of possibilities of keys that the attacker needs to decrypt the modified algorithm:

To construct GF (2^8), there are 30 irreducible polynomials of degree 8.

The encryption equation is: [C = P * k mod (irreducible polynomial)], k is key, the size is 8bit, and the number of possible keys is (2^8).

For example. To decrypt an encrypted message is composed of 8-bit the attacker needs 30 * 2^8 probability of keys at minimum = 7680 probability.

To decode an encrypted message is composed of 700-byte the attacker needs (5376000) probability of keys.

The security has been increased, the most important secure key is the utilized irreducible polynomial in the modified scheme since we have 30 irreducible polynomials, and one can use any of those as explained in (table 1). This is hard to be attacked by the crypto-analysis.

Table (4): Run time Comparison

<table>
<thead>
<tr>
<th>Systems</th>
<th>Encryption Time (S:ms)</th>
<th>Decryption Time (S:ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC4</td>
<td>56.36</td>
<td>3.06</td>
</tr>
<tr>
<td>Propose RC4</td>
<td>2.38</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table (4.2): Encrypted Data Test.

<table>
<thead>
<tr>
<th>No.</th>
<th>Tests</th>
<th>Condition</th>
<th>Result Value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rc4</td>
<td>Frequency</td>
<td><= 0.01</td>
<td>0.9124</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>Frequency within block</td>
<td><= 0.01</td>
<td>1.000012</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>Runs</td>
<td><= 0.01</td>
<td>0.8819</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>Longest Run</td>
<td><= 0.01</td>
<td>1.0022</td>
<td>PASS</td>
</tr>
<tr>
<td>Modified RC4</td>
<td>Frequency</td>
<td><= 0.01</td>
<td>0.946</td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>Frequency within</td>
<td><= 0.01</td>
<td>1.000012</td>
<td>PASS</td>
</tr>
</tbody>
</table>
Modified the RC4 Stream Cipher Algorithm Based on Irreducible Polynomial

<table>
<thead>
<tr>
<th>block</th>
<th><= 0.01</th>
<th>0.49589</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runs</td>
<td><= 0.01</td>
<td>1.0022</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Conclusion

Because of the increase in the speed and the evolution of computers, the strength of the crypto-analysis has increased, the need arises to increase the complexity of algorithms by using tiny blocks instead of using one bit and using alternative processes to XOR.

In this paper it is better to use GF (2^8) instead of use GF (2) because using (modular arithmetic) with prime number has exceptions in this algorithm which works on 8 bits data at a time, and is executed division with 8 bits, integers can be represented in the range 0 through 255. However, (256,255,254,253,252) is not a prime numbers, so that if arithmetic is performed in (Z_{256} Z_{255} Z_{254} Z_{253}) (arithmetic modulo 256,255,253,252), this set of integers will not be a field. The closest prime number less than this numbers is 251. Thus, the set Z_{251}, using arithmetic modulo 251, is a field. However, in this case the 8-bit patterns representing the integers 251 through 255 would not be used.

The modified algorithm still stream cipher because encryption a digital data stream one bit or one byte at a time.

References