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Abstract 
    In this work the basic concept of reflexive polytopeand Gorenstein polytope and 
Fano with some theorems about them are given.  Three standard binary operations on 
polytopes which are: the cartesian product (×), the direct sum (⊕) and the free 
join(⋈) are examined.  Finally techniques are used to prove the conjecture |V(P)| ≤

6
d
2 of the maximal number of vertices for a simplicial reflexive polytopes of even 

dimension. 
 

 عدد السطوح الانعكاسياكبر عدد من الرؤوس لمت
 

 الخلاصة
و متعدد السطوح جورنستین في ھذا البحث عرفنا بعض المفاھیم الاساسیة لمتعدد السطوح الانعكاسي      

, و ×)( وھي الضرب الدیكارتيات السطوح ومتعدد السطوح فانو, وثلاث من العملیات الابتدائیة على متعدد
free sum )⨁ و , (free join )(⋈  المسألة المفتوحة   لأثباتتكنیك تم اختبارھا. واخیرا استخدمنا

|V(P)| ≤ 6
d
 عدد من الرؤوس لمتعدد السطوح الانعكاسي. لأكبر2
 
 

INTRODUCTION 
he reflexive polytopes P ⊆ Rd were introduced by Victor Batyrev in the 
context of a mirror symmetry fascinating phenomenon in string theory. These 
polytopes are special case of an integral polytopes which have been intensively 

studied and classified by mathematician and physicists alike. By now, all 
isomorphism classes of reflexive polytope in dimension four, nearly half a billion, are 
known! Despite all these efforts, still many questions remain open [1]. There are a lot 
of applications concerned with subjects of polytope, for more details  see [2], [3] and 
[4].Theory of linear inequalities is closely related to the study of convex polytopes, if 
the bounded subset P of Euclidean d-space has non-empty interior and is determined 
by i linear inequalities in d variables, then P is a d-dimensional convex polytope (here 
called a d-polytope) which may have as many as faces of dimension d-1 and the 
vertices of this polytope are exactly the basic solution of the system of inequalities.    
So the number of vertices of a convex polytope defined by a system of linear 
inequalities is crucial for bounding the run-time of exact generation methods. It is not 
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easy to achieve a good estimator, since this problem belongs to the complexity class. 
Thus, to obtain an upper estimate of the size of the computation problem which must 
be faced in solving the system of linear inequalities, it suffices to find an upper bound 
for the number of vertices,[5]. 
 
BASIC CONCEPTS 
I    n this section some basic definitions of reflexive polytopeand Gorenstein polytope 
and Fano with some theorems are given.    
Definition(1.1),[6]: 
A set S ⊆Rd is said to be convex if the entire line segment between any two vectors 
in S is contained in S. so S is a convex if and only if 
{λx1 + (1 − λ)x2: 0 ≤ λ ≤ 1} ⊆ S for every x1, x2 ∈ S. 
 
 
  
 
 
 
                                      

Convex   Non-convex 
 

Figure (1): Convex and non-convex polytpe 
 

Definition (1.2),[7]: 
    The set of solutions 

 P=

⎩
⎪
⎨

⎪
⎧

(x1, … xd) ∈ Rd�
�

a11x1 + ⋯+ a1nxd ≤ b1
                                   .
                                  .
                                  .

am1x1 +⋯+ amdxd ≤ bm⎭
⎪
⎬

⎪
⎫

 

to the system 
a11x1 +⋯+ a1nxd ≤ b1

                                   .
                                  .
                                  .

am1x1 + ⋯+ amdxd ≤ bm

 

of a finitely many linear inequalities here (aij and bj are real numbers) are called a 
polyhedron 
 
Definition (1.3),[8]: 
    A polyhedron P ⊆ Rd is bounded if exist ω ∈ R+

d  such that ‖x‖ ≤ ω where x ∈
P then P is polytope. 
 
Definition (1.4),[1]: 
   The polytope P⊆Rd is called integral if all vertices of P belong to Zd. 
 
Definition (1.5),[9]: 
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     Let P be a polytope in Rd containing the origin in the interior int(P) , convex set P∗ 
in Rd is defined by P∗ ≔ �u ∈ Rd: ⟨u, x⟩ ≤ 1∀x ∈ P�this polytope is called dual of P 
and P∗∗ = P. 
 
Definition(1.6),[1]: 
    A polytope P is called a reflexive, if there exists w ∈ int(P ∩ Z)such that all facets 
have lattice distance 1 from w. 
 
Definition (1.7),[10]: 
   A polytope P ⊆ Rd is said to be simple if there are exactly d edges through each 
vertex, and it is called simplicial if each facet contains exactly d vertices. 
 
Definition (1.8),[1]: 
   A subset C ⊆ Rd is a cone if for all x , y ∈ C and λ, μ ∈ R≥ also  λx + μy ∈ C. A 
cone C is polyhedral (finitely constrained) if there are ∝1, … ,∝m∈ (Rd)∗ such that   
 

C = � H∝i
−

m

i=1
= {x ∈ Rd| ∝i (x) ≤ 0 for  1 ≤ i ≤ m} 

A cone C is called finitely generated by vectors v1, … , vr ∈ Rd if 

C = cone(v1, … , vd) ≔ {�λivi|λi ≥ 0 for 1 ≤ i ≤ d}
d

i=1

 

 
 
 
 
 
 
 
 
 

Figure(2): Cone 
 
 
 
 
Definition (1.9), [11]: 
    A pointed cone K ⊆Rd is a set of the form K = {v+aw1 + bw2 + ⋯+ mwn ∶
a, b, … , m ≥ 0 }, where v,w1, w2, … , wm ∈ Rd such that there exist a hyperplane H 
for which, H ∩ K = {v}, the cone is called rational if v,w1, w2, … , wm ∈ Qd. 
 
Definition (1.10),[1]: 
   Let C ⊆  Rd+1 be a (d+1)-dimensional pointed cone. Then C  is called Gorenstein 
coneCP, if there is a d-dimensional integral polytope P ⊆ Rd such that C ≅ Cp 
 
Definition (1.11),[9]: 
     A polytope is called centrally symmetric if v ∈ P implies −v ∈ P . 
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Definition(1.12),[12]: 
     Let P ⊆ Rd be integral d-polytope. For t ∈ Z+, the set tP = {tX : X ∈ P} is said to 
be a dilated polytope. 
 
Theorem (1.1)(Ehrhart’stheorem),[11]: 
     If P is an integral convex d-polytope then L(P,t) is a polynomial in t of degree d 
 
Definition(1.13),[13]: 
     Let P ⊆ Rd be an integral d-polytope. Define a map L(P,.) : N → N by L(P,t) = 
#(tP∩ Zd), wher"# or card" means the cardinality of ( tP∩ Zd) and N is the set of 
natural numbers. It is seen that L(P,t) can be represented as: L(P,t) = ∑ citid

i=0 , with 
coefficients ci  this polynomial is said to be Ehrhart polynomial of integral d-
polytope. 
 
Definition(1.14),[14]: 
     Let P ⊆ Rd , a d-dimension integral polytope, and  set L(P,t) = #(P ∩ ZP

d) for t 
∈ Z≥1 .  
The Ehrhart series of P is,  
Ehrp(x)=1+∑ L(P, t)xtt∈Z≥1  
 
Theorem (1.2),[1]: 
    The following are equivalent for a d-dimensional integral polytopeP ⊆ Rd of 
degree s and codgree r : 
(1)Cp∆ Gorenstein cone 
(2) rP is reflexive 
(3)∀k ≥ r: int(kP) ∩ Zd = w + (t − r)P ∩ Zd for some w ∈ (rP) ∩ Zd 
(4)L(P,−k) = (−1)dL(P°, k − r)∀k ∈ Z 
(5)  Ehrp(t) = (−1)d+1Ehrp(t) 
(6) hi = hs−i ∀i = 0, … , s 
 
 
Definition (1.15),[1]: 
P is Gorenstein polytope if (1)-(6) hold. In other word, an integral polytope P is 
Gorenstein polytope if some multiple tP is reflexive. 
For example, reflexive polytopes are precisely Gorenstein polytopes of degree one. 
 
 
  
 
 
                               P                                                                     2P 

Figure(3): Gorenstein polytope of codegree r codeg(P) = 2 
 
Definition(1.16),[15]: 
    An integral convex polytope P ⊆Rd of dimension d is a Fanopolytope if the origin 
of Rd is a unique point belonging to the interior of P . 
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Figure(4): Fanopolytope 
 
Standard Constructions 
     Our main motivation is to determine the maximal number of vertices of a 
simplicial reflexive polytope, and to find out how the exetermal polytopes look like. 
For this, present a direct way how to construct higher-dimensional reflexive 
polytopes, which are the cartesian product (×) ,  free-sum construction (⊕) , and the 
free join (⋈).  
Product of P1 and P2 to be polytope  

P1 × P2 = conv(�(x, y) ∈ Rd+q�x ∈ P1, y ∈ P2�) 
if 0 ∈ relint(P1) and 0 ∈ relint(P2), where relint(P) means relative interior which is  
relint (P) = �∑ λid

i=1 vi�each λi > 0,∑ λid
i=0 = 1�, 

Then the polytope 
P1⨁P2 = conv�{(x, 0d) ∈ Rd+q| x ∈ P1} ∪ ��0q, y� ∈ Rd+q� y ∈ P2}) 

Defines the direct sum (or free sum) of P1andP2.  
Finally let P1 ⊆ Rd`+q+1 be a d-polytope and P2 ⊆ Rd+q+1 be q-polytope if aff(P1) 
and aff(P2) are skew that they do not intersect and contain no parallel lines then the 
free join of the polytopes is 

P1 ⋈ P2 = conv(P1⋃P2) 
Some simple visual examples of these operations are useful for given which are. 
 
Example (2.1),[16]: 
     Let P1 = conv�(1), (3)� ⊆ R, be a line segment of length 2, and let               P2 =
conv((−1,−1), (1,−1), (1,1)(−1,1)) ⊆ R2, be a two-by-two square. The Cartesian 
product are constructing 

P1 × P2 = conv �
(1,−1,−1), (1,1,−1), (1,1,1), (1,−1,1)
(3,−1,−1), (3,1,−1), (3,1,1), (3,−1,1)� 

is a cube in R3. 
 
 
 
 
 
 

 
Figure(5): Cartesian product 
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Example (2.2),[16]: 
Let P2 be define as the above example, but P1 = conv((−1), (1)) ⊂ R so that the 
origin is in the relative interior of both polytopes, we can now construct the dirct sum  

P1 ⊕ P2 = conv({(0,−1,−1), (0,1,−1), (0,−1,1)} ∪ {(−1,0,0), (1,0,0)) 
is a bipyramid in R3. 
 
 
 
 
 
 
 
 
 
 

P1 and P2                                                                                      P1 ⊕ RP2 
 

Figure(6): The free sum 
 
Example (2.3),[16]: 
    Unfortunately, the free join of a square and a line is four-dimensional, so we will 
have to simplify the setup of the previous two examples a bit to be able to visualize it. 
Let 
P1 =conv((0,-1,1),(0,1,1)) and let P2 =conv((-1,0,0),(1,0,0,)) then 

P1 ⋈ P2 = conv({(0,−1,1), (0,1,1)}⋃{(−1,0,0), (1,0,0)}) 
 
 
Is simplex in R3. 
 
 
 
 
 
 

P1 and P2                                                                         P1  ⋈ RP2 
 

Figure(7): Free join 
 
   It follows directly from the definition that the free-sum construction is the dual 
operation to products: 

(P1 ⊕ P2)∗ = P1∗ × P2∗ 
    In particular if P1 and P2 are reflexive, and then P1 ⊕ P2, P1 × P2 are reflexive.  
 There are nice formulas how the Ehrhart and h-polynomials behave under the free 
sum and product construction. This shows the relation between the free sum and 
Cartesian product in the following proposition.  
 
Proposition (2.1),[1]: 
 LetP1 andP2 be a reflexive polytope. Then 
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L(P1 × P2, t) = L(P1, t) ∙  L(P2, t),    
hP1⊕ P2 = hP1hP2. 
 
 
Example(2.4): 
   Let P1 = conv�(1), (−1)� ⊆ R, be a line segment of length 2, and P2 =
conv((−1,−1), (1,−1), (1,1)(−1,1)) ⊆ R2 
 
 
 
 
 
 
 
 

                           P1                                                                                         P2 
Figure(8): Two reflexive polytopes 

 
L(P1, t) = 2t + 1   ,   L(P2, t) = 4t2 + 4t + 1.Then L(P1, t) ∙  L(P2, t) = 8t3 + 12t2 +
6t + 1. 

P1 × P2 = conv �
(1,−1,−1), (1,1,−1), (1,1,1), (1,−1,1)

(−1,−1,−1), (−1,1,−1), (−1,1,1), (−1,−1,1)�  as cube in 3-

dimension. 
L(P1 × P2) =  8t3 + 12t2 + 6t + 1. 
hP1 = t + 1 ,  hP2 = t2 + 5t + 1. Then hP1hP2 = 3t3 + 6t2 + 6t + 1 
P1 ⊕ P2 = conv�(0,1,1), (0,1,−1), (0,−1,1), (0,−1,−1) ∪ (1,0,0), (−1,0,0)� ⊆
R3. 
Then hP1⊕ P2 = 3t3 + 6t2 + 6t + 1 
 
The combinatory of simplicial reflexive polytopes 
     Let P ⊆Rd be a d-dimensional reflexive polytope with the origin in its interior. 
Now, let us turn to a simplicial reflexive d-polytopes. Due to the complete 
classification of reflexive d-polytopes d ≥ 4, the simplicial ones have been classified 
as well. In dimension two there are (of course) 16 isomorphism classes of simplicial 
reflexive polytopes, while in dimension three and four there are 194 and 5450 
isomorphism classes respectively. Reflexivity guarantees that uF ∈ Zd for every facet 
F of a simplicial reflexive polytope P. But in general, the points uFw ∉ Zd for arbitrary 
facet F of P and w ∈ V(F).  Where V(F) is the set of vertices of the face for the 
polytope , However, 
{uFw| w ∈ V(F)} ⊂ Zd ⟺ V(F) is a basis of Zd. 
The fact that for any x∈ V(P),  
〈uF, x〉 ≤ 0  if and only if  x ∉ F . 
Note (3.1),[9]: 
When P is any polytope,  vP is defined to be the sum of the vertices of P, 

vP ≔ � v
v∈V(P)

. 
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Definition (3.1),[9]: 
Let P be a polytope containing the origin in its interior. A facet F of P is called 
special, if vP is  a non-negative linear combination of V(F), where V(F) means the 
vertices of the face F.  
Here are some obvious properties of special facets of polytopes having the origin in 
its interior. 
 
Lemma (3.1),[9]: 
Let P be a d-polytope with 0 ∈ int (P), then 
1. P has at least one special facet. 
2. Every facet of P is special if and only if vP= 0 
3. If P is simplicial, then a facet F is special if and only if 〈uFv, vP〉 ≥ 0 for all v 
∈ V(F) 
4. If P is simplicial and reflexive, then 0 ≤ 〈uF, vP〉 ≤ d − 1 for any special 
facet F of P. 
 
Bounds on the number of vertices [9]: 
    When P is an arbitrary reflexive d-polytope the following bound on the number of 
vertices:|V(P)| ≤ 2dα, where α = max {|V(F)|  : F facet of P }. It is conjectured that 

|V(P)| ≤ 6
d
2 for any reflexive d-polytope with equality if and only if d is even and P∗ 

is isomorphic to the convex hull of the points 
±e1 ± e2, … ,±ed,±(e1 − e2) , … ±(ed−1 −  ed ). 
Where  ei are  Z-basis. 
For simplicial reflexive polytope a theorem is given. 
 
Remark(3.1.1) 
If u ∈ V(P∗), we denoted by Fu  the corresponding facet of P, namely  

Fu = {x ∈ P|〈x, u〉 = −1}. 
δP is defined as  

δP ≔ min{〈v, u〉|v ∈ V(P), u ∈ V(P∗)} ∈ Z≥0 
 
Lemma (3.1.1), [17]: 
Let P be a simplicial reflexive polytope and v ∈ V(P), u ∈ V(P)∗ such that 〈v, u〉 =
δP. Then v is adjacent to Fu 
 
Theorem(3.1.1),[17]: 
Let P be simplicial reflexive polytope of dimension d then: 
  |V(p)| ≤ 3d                                                                                                           …(1) 

With equality hold if and only if d is even andXp ≅ (S3)
d
2, where XPmeans 

Gorenstein toric Fano variety, and S3 is symmetric group. 
 
Proof: 
First of all, observe that for any u ∈ V(P∗) we have  
|{v ∈ V(P)|〈v, u〉 = −1}| = d                                                                                … (2) 
and 
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|{v ∈ V(P)|〈v, u〉 = 0}| ≤ d                                                                                   ….(3) 
 
In fact, since P is simplicial, the facet Fu contains n vertices. Moreover, if 〈v, u〉 = 0, 
then δp = 0, 
by lemma(3.1.1)it is know that v is adjacent to Fu. Again, since P is simplicial, Fu has 
at most n adjacent vertices, and the equality (1) . 
The origin lies in the interior of P∗, the  relation can be written as, 
                                           
m1u1 + ⋯+ mhuh = 0                                                                                                    …(4) 
Where 
 h> 0, u1, … , uh are vertices of P∗, and m1, … , mh arepositive integer. 
 Set I:= {1,…,h} and M :=∑ mii∈I  , for any vertex v of P, define  
A(v) :={i ∈ I|〈v, ui〉 = −1and  B(v) :={i ∈ I|〈v, ui〉 = 0}. 
Then observe that 〈v, ui〉 ≥ 1 for any i ∉ A(v) ∪ B(v). So for every v ∈ V(P) we 
have, 
  

0 = �mi〈v, ui〉
i∈I

= − � mi
i∈A(v)

+ � mi〈v, ui〉
i∉A(v)∪B(v)

      

≥ − � mi +
i∈A(v)

� mi
i∉A(v)∪B(v)

= M − 2 � mi − � mi
i∈B(v)I∈A(v)

 

Summing over all vertices of P we get, 
M|V(P)|    ≤ 2 � � mi + � � mi

i∈B(v)v∈V(P)i∈A(v)v∈V(P)

 

       = 2�mi|{v ∈ V(P)|〈v, ui〉 = −1} + �mi
i∈Ii∈I

|{v ∈ V(P)|〈u, ui〉 = 0}|. 

 
And using (2) and (3) this gives|V(p)| ≤ 3d. 
Assuming that|V(P)| = 3d, Then all inequalities above are equalities; in particular, 
for any v and ui such that〈v, ui〉 > 0, must have〈v, ui〉 = 1.  
Observe now that are can choose a relation as (4) involving all vertices of  P∗, namely 
with h = |V(P∗)|, so 〈v, u〉 ∈ {−1,0,1} for every v ∈ V(P) and u ∈ V(P∗). Then P and 
P∗ are centrally symmetric. 
 
The maximal number of vertices 
   Before we explain our goal we show some definitions needed in our work.  
 
Definition (3.2.1),[17]: 
    If G ⊆Sn is a permutation group of degree n then its permutation representation  
σ: G → GL(n, R) is defined as follows. If x is an element in G, then the (i,j)-th entry  
of σ(x) is given by  

σ(x)ij = � 1 if σ sends i to j
0 otherwise          

 
If x ∈ G ⊆  Sn then σ(x) is n×n matrix with n once and n2 − n zeros. Furthermore, 
each row and each column contains exactly one nonzero entry. 
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Now, the symmetric group can be represented as the face of permutahedron in two-
dimension (defined as the convex hull of all vectors that are obtained by permuting 

the coordinates of the vector  �
1
⋮
d
� ). This is given in figure (9). 

 
 
 
 
 
 
 
 
 

Figure(9): A hexagon, face of permutahedron 
 
It is a natural question to ask for the maximal number of vertices of a d dimensional 
reflexive (or Gorenstein) polytope. Let us look at small dimension d≤ 4 where the 
answer is known by the classification of Kreuzer and skarke. 
 
Example (3.2.3): 
For d=2 :|V(p)| ≤ 6, only attained by the reflexive hexagon ℋ. 
For d=3 :|V(p)| ≤ 14, only attained by the polytope in figure (10). 
For d=4 :|V(p)|  ≤36, only attained by ℋ × ℋ. 
Based upon these observations we state the following daring conjecture. 
 
 
 
 
 
 
 
 

Figure(10): polytope in 3-dimension 
 

Theorem(3.2.1),[1]: 
    Let P be a simplicial. Then |V(P)|≤ 3d, and equality hold only if d is even and P 
≅ ℋ ∘ … ∘ ℋ. 
 
Proof:  
    let F be a special facet. Obviously, special facets exist. Let us slice the polytope 
(for i∈ {−1,0,1, … }) : 
Hp(F,i):= {v∈ V(p)〈ηF〉v = i}∀i ∈ Z≥−1 
Clearly, 
�Hp(F, 0)� = d. 
Moreover   
|Hp(F, 1) ≤ d. 
By definition of special facet we have the following inequality: 
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0 ≥ 〈ηF, � v
v∈V(p)

〉 = � i�Hp(F, i)� = −d + � i
i≥1

�Hp(F, i)�.
i≥−1

 

 
Hence, simply count the vertices as: 

|V(P)| = � |HP(F, i)| ≤ |Hp(F,−1) + |Hp(F, 0) + � |Hp(F, i) ≤ 3d .
I≥1I≥−1

 

It remains to consider the equality case |V(p)| = 3d. 
In this case, inequality in equation  (1) yields that 

〈ηF, � v
v∈V(p)

〉 = 0 

     Hence∑ vv∈V(p) = 0, so any facet of P is special. Moreover, equalities in equation 
(1) and show that any vertex of P lies in Hp(F,i) for i = -1,0,1. Therefore, −ηF  ∈
P∗.so −P∗⊆P∗ and thus−P∗ = P∗. In other word, P is centrally symmetric. 
Since |V(P)|= 3d and |Hp(F,1)| = |Hp(F,-1)| = d, we have |Hp(F,0)| =d. thenHp(F,0) 
={m1, … m2}, 
 as defined in the previous subsection. Let K∈ {1, … k}, by proposition there are I, J ⊆ 
{1,…,d}, I ∩ J = ∅, |I| = |J| such that mk = ∑ bjj∈J − ∑ bii∈I . Since all m1, … , md are 
pairwise different, lemma yields that mk= bjk − bk for somejk ∈ {1, . . , d}, jk ≠ k in 
other words, 

σ: {1, … , d} → {1, … , d}K → jk 
is a fixed-point free(σ(i) ≠ i) n volution (σ2 = 1, jk = K).  It may assume that this 
permutation is of the form 

σ = (12)(34) … (d − 1d). 
In particular, d is even. Moreover 
P = conv(±b1,±(b1 - b2),±b2, . . . ,±bd ,±(bd−1 − bd ),±bd ). 
It remains to show that b1, … , bd is a integral basis, since it that caseP≅ ℋₒ… ₒℋ. 
Now, according to conjecture [1 ] the open problem about the maximal number of 
vertices is given with 
 
Theorem (3.2.2): 
    Let  P ⊆  Rd be asimplicial reflexive polytope V(P) it vertices, and the hexagon  ℋ 
is the face for the reflexive polytope then   

|V(p)| ≤ 6
d
2, 

Equality holds for d even and P≅ ℋ
d
2. 

 
Proof: 
    Since P is simplical, then using theorem (3.2.1), we get  
|V(P)| ≤ 3d, where d is even, and P ≅ ℋ ∘ℋ ∘⋯∘ℋ. 

And by theorem (3.1.2) |V(P)|  = 3d , if d is even and XP ≅ S3
d
2. 

By the above two theorems we get: 

|V(P)| ≤ 3d if d even and XP ≅ ℋ
d
2, where ℋ is isomorphic to S3,  that means   ℋ ≅

S3. 
Also, one can prove that S3 ≅ ℋ by using the information in section (3.2).  
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Finally, to prove that |V(P)| ≤ 6
d
2 we use 

|V(P)| ≤ 3d ≤ 6
d
2 and the induction method when d is even  

Let d = 2n then 
3(2n) ≤ 6

2n
2  

6n = 6n. 
Let n = r, then  
6r   ≤  6r  is true. 
By induction method, we get the proof for this conjecture. 
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