The present research investigates the effect of axial relative density on the ultimate load of model piles with different lengths driven in dry sandy soil having small scale model piles.
The materials used in this study are divided into three parts they are; sandy soil, steel piles and aluminum pile caps.A total number of 27 model tests are carried out using three relative densities (33%, 60%, and 80%) corresponding to loose, medium and dense sand, respectively.
A square section steel solid model piles are used with 18 mm width and (320, 420, 520) mm embedded length (Ld). A 6B distance between the piles center to center is selected to eliminate the effect of group interaction.
Two pile groups' configuration (1×2) and (2 × 2) are considered in this study connected by aluminum caps with smooth surface having a thickness of 25 mm.
The load applied on the models is measured by a pressure transducer connected to the main line of the hydraulic pressure system and applying up to failure. During all the experimental tests, the loading rate is kept at 3 mm/min.
It was founded that relative density has more impact on (2×2) pile group than on (1×2) pile group and single pile. The average rate of increase in the ultimate load from loose to medium is about 15% greater than the average rate of increase from medium to dense. Also, the ultimate load of pile increased about 96% with changing the sand density from loose to medium sand for single and piles group while the average increment is about 81% from medium to dense. The increase in embedded length of pile caused increasing the ultimate load capacity and decreasing the settlement ratio. The average rate of increase in the ultimate load when the embeddedlength changes from 32 cm to 42 cm is about 4% less than the average rate of increase when the embedded length changes from 42 cm to 52 cm. Also, use of (1×2) piles group instead of a single pile, the average rate of increase is about 6% less than the average rate of increase when change from (1×2) group to (2×2) pile group.
Finally, when the number of piles changes from single pile to (1×2) piles group, and to (2×2) piles group, the average of increase of ultimate load is about 102.5% and 108.5% respectively.